
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054 U.S.A.
650-960-1300

Send comments about this document to: docfeedback@sun.com

Forte™ for Java™ 4, Enterprise Edition
Tutorial

Forte for Java 4

Part No. 816-4057-10
June 2002, Revision A

Please
Recycle

Copyright © 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document.

In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at

http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and

decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of

Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

This product includes code licensed from RSA Data Security.

Sun, Sun Microsystems, the Sun logo, Forte, Java, NetBeans, iPlanet, docs.sun.com, and Solaris are trademarks or registered trademarks of Sun

Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other

countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

Netscape and Netscape Navigator are trademarks or registered trademarks of Netscape Communications Corporation in the United States and

other countries.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,

ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans ce

document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés

à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats-Unis et

dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la

décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque moyen que ce soit, sans

l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des

fournisseurs de Sun.

Ce produit comprend le logiciel licencié par RSA Data Security.

Sun, Sun Microsystems, le logo Sun, Forte, Java, NetBeans, iPlanet, docs.sun.com, et Solaris sont des marques de fabrique ou des marques

déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.

aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont basés sur une architecture développée par Sun

Microsystems, Inc.

UNIX est une marque enregistree aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company Ltd.

Netscape et Netscape Navigator sont des marques de Netscape Communications Corporation aux Etats-Unis et dans d’autres pays.

LA DOCUMENTATION EST FOURNIE “EN L’ÉTAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES

OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT

TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A

L’ABSENCE DE CONTREFAÇON.

Contents

Before You Begin xi

1. Getting Started 1

Software Requirements for the Tutorial 1

What You Need to Run the Forte for Java 4 IDE 2

What You Need to Create and Run the Tutorial 2

Starting the Forte for Java 4 IDE 3

Starting the IDE on Solaris, UNIX, and Linux Environments 3

Starting the IDE on Microsoft Windows 3

Modifying the Session With Command-Line Switches 4

Specifying Your User Settings Directory 5

Understanding the Forte for Java 4 Directory Structure 6

Verifying the Correct Default Application Server and Web Server 7

Creating the Tutorial Database Tables 8

2. Introduction to the Tutorial 13

Functionality of the Tutorial Application 13

Application Scenarios 14

Application Functional Specification 15

User’s View of the Tutorial Application 15
iii

Architecture of the Tutorial Application 18

Application Elements 19

EJB Tier Details 20

Overview of Tasks for Creating the Tutorial Application 21

Creating the EJB Components 21

Creating the Tutorial’s Web Service 23

Installing and Using the Provided Client 24

End Comments 25

3. Building the EJB Tier of the DiningGuide Application 27

Overview of the Tutorial’s EJB Tier 27

The Entity Beans 28

The Session Bean 29

The Detail Classes 29

Summary of Steps 31

Creating Entity Beans With the EJB Builder 32

Creating the Restaurant Entity Bean 32

Creating the Customerreview Entity Bean 35

Creating Create Methods for CMP Entity Beans 37

Creating Finder Methods on Entity Beans 40

Creating Business Methods for Testing Purposes 42

Creating Detail Classes to View Entity Bean Data 44

Creating the Detail Classes 44

Creating the Detail Class Properties and Their Accessor Methods 44

Creating the Detail Class Constructors 45

Creating Business Methods on the Entity Beans to Fetch the Detail

Classes 47
iv Forte for Java 4, Enterprise Edition Tutorial • June 2002

Testing the Entity Beans 48

Creating a Test Client for an Entity Bean 48

Providing the RI Plugin With PointBase Information 51

Deploying the Test Application 53

Using the Test Client to Test the Entity Bean 53

Checking the Additions to the Database 57

Creating a Session Bean With the EJB Builder 59

Coding a Session Bean’s Create Method 60

Creating Business Methods to Get the Detail Data 62

Creating a Business Method to Create a Customer Review Record 66

Creating Business Methods That Return Detail Class Types 67

Adding EJB References 69

Testing the Session Bean 71

Creating a Test Client for a Session Bean 71

Providing the RI Plugin With PointBase Information 72

Deploying the Test Application 73

Using the Test Client to Test a Session Bean 74

Checking the Additions to the Database 76

Comments on Creating a Client 77

4. Creating the DiningGuide Application’s Web Service 79

Overview of the Tutorial’s Web Service 79

The Web Service 80

The Runtime Classes 80

The Client Proxy Pages 80

Creating the Tutorial’s Web Services Tier 81

Creating the Web Service Module 81

Specifying the Web Service’s SOAP RPC URL 83
Contents v

Generating the Web Service’s Runtime Classes 84

Testing the Web Service 84

Creating a Test Client and Test Application 85

Specifying the Web Context Property 86

Deploying the Test Application 87

Using the Test Application to Test the Web Service 88

Making Your Web Service Available to Other Developers 93

Generating the WSDL File 94

Generating a Client Proxy From the WSDL File 94

5. Creating a Client for the Tutorial Application 97

Creating the Client With the Provided Code 97

Running the Tutorial Application 99

Examining the Client Code 102

Displaying Restaurant Data 102

Displaying Customer Review Data for a Selected Restaurant 104

Creating a New Customer Review Record 106

A. DiningGuide Source Files 111

RestaurantBean.java Source 112

RestaurantDetail.java Source 115

CustomerreviewBean.java Source 119

CustomerreviewDetail.java Source 121

DiningGuideManagerBean.java Source 123

RestaurantTable.java Source 126

CustomerReviewTable.java Source 130

B. DiningGuide Database Script 135

Index 137
vi Forte for Java 4, Enterprise Edition Tutorial • June 2002

Figures

FIGURE 2-1 DiningGuide Application Architecture 19

FIGURE 3-1 Function of a Detail Class 30
vii

viii Forte for Java 4, Enterprise Edition Tutorial • June 2002

Tables

TABLE 1-1 runide Command-Line Switches 4

TABLE 1-2 Forte for Java 4 Directory Structure 6

TABLE 1-3 Directory Structure for the User Settings Directory 7

TABLE 1-4 DiningGuide Database Tables 8

TABLE 1-5 Restaurant Table Records 9

TABLE 1-6 CustomerReview Table Records 9
ix

x Forte for Java 4, Enterprise Edition Tutorial • June 2002

Before You Begin

Welcome to the Forte™ for Java™, Enterprise Edition tutorial. This tutorial shows

you how to use the following Enterprise Edition features:

■ EJB™ 2.0 Builder—for creating and developing Enterprise JavaBeans™

components based on the Enterprise JavaBeans™ Specification, Version 2.0.

■ EJB module assembly—for assembling the EJB™ components into an EJB module,

which you export into an EJB Java Archive (JAR) file

■ Test application facility—for testing enterprise beans without having to create a

client manually, using the J2EE™ Reference Implementation, version 1.3.1 as the

application server.

■ Web Services features—for building a SOAP RPC-based web service from the

existing EJB components and generating JSP™ pages viewable from a web

browser

■ J2EE Reference Implementation—a customized version of the J2EE RI, version

1.3.1 for deploying and testing the tutorial application

You can create the examples in this book in the environments listed in the release

notes on the following web site:

http://forte.sun.com/ffj/documentation/index.html

Screen shots vary slightly from one platform to another. You should have no trouble

translating the slight differences to your platform. Although almost all procedures

use the Forte™ for Java™ 4 user interface, occasionally you might be instructed to

enter a command at the command line. Here too, there are slight differences from

one platform to another. For example, a Microsoft Windows command might look

like this:

c:\> cd MyWorkDir\MyPackage
xi

http://forte.sun.com/ffj/documentation/index.html

To translate for UNIX® or Linux environments, simply change the prompt and use

forward slashes:

Before You Read This Book

This tutorial creates an application that conforms to the architecture documented in

Java 2 Platform, Enterprise Edition (J2EE™) Blueprints. If you want to learn how to

use the features of Forte for Java 4, Enterprise Edition to create, develop, and deploy

a J2EE compliant application, you will benefit from working through this tutorial.

Before starting, you should be familiar with the following subjects:

■ Java programming language

■ Enterprise JavaBeans concepts

■ Java™ Servlet syntax

■ JDBC™ enabled driver syntax

■ JavaServer Pages™ syntax

■ HTML syntax

■ Relational database concepts (such as tables and keys)

■ How to use the chosen database

■ J2EE application assembly and deployment concepts

This book requires a knowledge of J2EE concepts, as described in the following

resources:

■ Java 2 Platform, Enterprise Edition Blueprints

http://java.sun.com/j2ee/blueprints

■ Java 2 Platform, Enterprise Edition Specification
http://java.sun.com/j2ee/download.html#platformspec

■ The J2EE Tutorial (for J2EE SDK version 1.3)

http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html

■ Java Servlet Specification Version 2.3
http://java.sun.com/products/servlet/download.html#specs

■ JavaServer Pages Specification Version 1.2
http://java.sun.com/products/jsp/download.html#specs

% cd MyWorkDir/MyPackage
xii Forte for Java 4, Enterprise Edition Tutorial • June 2002

http://java.sun.com/j2ee/blueprints
http://java.sun.com/j2ee/download.html#platformspec
http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html
http://java.sun.com/products/servlet/download.html#specs
http://java.sun.com/products/jsp/download.html#specs

Familiarity with the Apache implementation of the SOAP (Simple Object Access

Protocol) version 1.1 specification is helpful. Apache SOAP is a subproject of the

Apache XML Project. For more information, see:

http://xml.apache.org/soap/index.html

Note – Sun is not responsible for the availability of third-party web sites mentioned

in this document and does not endorse and is not responsible or liable for any

content, advertising, products, or other materials on or available from such sites or

resources. Sun will not be responsible or liable for any damage or loss caused or

alleged to be caused by or in connection with use of or reliance on any such content,

goods, or services available on or through any such sites or resources.

How This Book Is Organized

This manual is designed to be read from beginning to end. Each chapter in the

tutorial builds upon the code developed in earlier chapters.

Chapter 1 describes the software requirements for the DiningGuide tutorial, explains

how to start the Forte for Java 4 integrated development environment (IDE), how to

verify that the IDE is using the correct web server and application server, and how

to create the tutorial database tables. This chapter includes a descriptive list of the

installed Forte for Java 4 directories.

Chapter 2 describes the functionality and architecture of the tutorial application.

Chapter 3 provides step-by-step instructions for creating the EJB tier of the tutorial

application, and how use the Forte for Java 4 test application facility to test each

bean.

Chapter 4 describes how to use the Forte for Java 4 IDE to generate the tutorial’s

web service from its EJB tier, and how to test the web service.

Chapter 5 explains how the provided Swing client accesses the output generated

from the Web Services module in Chapter 4, and how to run the tutorial application.

Appendix A provides complete source files for the tutorial application.

Appendix B provides the database script for the tutorial application.
Before You Begin xiii

http://java.sun.com/products/jsp/download.html#specs
http://xml.apache.org/soap/index.html

Typographic Conventions

Related Documentation

Forte for Java 4 documentation includes books delivered in Acrobat Reader (PDF)

format, online help, readme files of example applications, and Javadoc™

documentation.

Documentation Available Online

The documents in this section are available from the Forte for Java 4 portal and the

docs.sun.com SM web site.

The documentation link of the Forte for Java Developer Resources portal is at

http://forte.sun.com/ffj/documentation/ . The docs.sun.com web site is

at http://docs.sun.com .

■ Release notes (HTML format)

Available for each Forte for Java 4 edition. Describe last-minute release changes

and technical notes.

Typeface Meaning Examples

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output

Edit your.login file.

Use ls -a to list all files.

% You have mail .

AaBbCc123 What you type, when contrasted

with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,

words to be emphasized

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be superuser to do this.

AaBbCc123 Command-line variable; replace

with a real name or value

To delete a file, type rm filename.
xiv Forte for Java 4, Enterprise Edition Tutorial • June 2002

http://forte.sun.com/ffj/documentation/
http://docs.sun.com

■ Forte for Java 4 Getting Started Guide (PDF format) - Community Edition part no.

816-4062-10, Enterprise Edition part no. 816-4063-10

Available for each Forte for Java 4 edition. Describes how to install the Forte for

Java 4 product on each supported platform and includes other pertinent

information, such as system requirements, upgrade instructions, web server and

application server installation instructions, command-line switches, installed

subdirectories, Javadoc setup, database integration, and information on how to

use the Update Center.

■ The Forte for Java 4 Programming series (PDF format)

This series provides in-depth information on how to use various Forte for Java 4

features to develop well-formed J2EE applications.

■ Building Web Components - part no. 816-4337-10

Describes how to build a web application as a J2EE web module using JSP

pages, servlets, tag libraries, and supporting classes and files.

■ Building J2EE Applications With Forte for Java - part no. 816-4061-10

Describes how to assemble EJB modules and web modules into a J2EE

application, and how to deploy and run a J2EE application.

■ Building Enterprise JavaBeans Components - part no. 816-4060-10

Describes how to build EJB components (session beans, message-driven beans,

and entity beans with container-managed or bean-managed persistence) using

the Forte for Java 4 EJB Builder wizard and other components of the IDE.

■ Building Web Services - part no. 816-4059-10

Describes how to use the Forte for Java 4 IDE to build web services, to make

web services available to others through a UDDI registry, and to generate web

service clients from a local web service or a UDDI registry.

■ Using Java DataBase Connectivity - part no. 816-4685-10

Describes how to use the JDBC productivity enhancement tools of the Forte for

Java 4 IDE, including how to use them to create a JDBC application.

■ Forte for Java 4 tutorials (PDF format)

You can also find the completed tutorial applications at

http://forte.sun.com/ffj/documentation/
tutorialsandexamples.html

■ Forte for Java 4, Community Edition Tutorial - part no. 816-4058-10

Provides step-by-step instructions for building a simple J2EE web application

using Forte for Java 4, Community Edition tools.

■ Forte for Java 4, Enterprise Edition Tutorial - part no. 816-4057-10

Provides step-by-step instructions for building an application using EJB

components and Web Services technology.
Before You Begin xv

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html
http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

The docs.sun.com web site (http://docs.sun.com) enables you to read, print,

and buy Sun Microsystems manuals through the Internet. If you cannot find a

manual, see the documentation index installed with the product on your local

system or network.

Online Help

Online help is available inside the Forte for Java 4 development environment. You

can access help by pressing the help key (Help in a Solaris environment, F1 on

Microsoft Windows and Linux), or by choosing Help → Contents. Either action

displays a list of help topics and a search facility.

Examples

You can download several examples that illustrate a particular Forte for Java 4

feature, as well as the source files for the tutorial applications from the Developer

Resources portal, at:

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

Javadoc Documentation

Javadoc documentation is available within the IDE for many Forte for Java 4

modules. Refer to the release notes for instructions on installing this documentation.

When you start the IDE, you can access this Javadoc documentation within the

Javadoc pane of the Explorer.

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments and

suggestions. Email your comments to Sun at this address:

docfeedback@sun.com

Please include the part number (816-4057-10) of your document in the subject line of

your email.
xvi Forte for Java 4, Enterprise Edition Tutorial • June 2002

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html
http://docs.sun.com

CHAPTER 1

Getting Started

This chapter explains what you must do before starting the Forte for Java 4,

Enterprise Edition tutorial. For your convenience, it duplicates some installation

information from the Getting Started Guide.

The topics covered in this chapter are:

■ “Software Requirements for the Tutorial,” which follows

■ “Starting the Forte for Java 4 IDE” on page 3

■ “Verifying the Correct Default Application Server and Web Server” on page 7

■ “Understanding the Forte for Java 4 Directory Structure” on page 6

■ “Creating the Tutorial Database Tables” on page 8

Note – There are several references in this book to the DiningGuide application files.

These files include a completed version of the tutorial application, a readme file

describing how to run the completed application, and the SQL script for creating the

required database tables. You can obtain these files in a compressed zip file from

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

Software Requirements for the Tutorial

This section describes how to prepare your system before starting the Forte for

Java 4, Enterprise Edition tutorial. This means making sure you have everything

required to run the Forte for Java 4 integrated development environment (IDE), as

well as having the additional requirements for creating and running the tutorial.

You can access general system requirements from the release notes or from the Forte

for Java 4 portal’s Documentation page at

http://forte.sun.com/ffj/documentation/index.html .
1

http://forte.sun.com/ffj/documentation/index.html
http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

What You Need to Run the Forte for Java 4 IDE

The Forte for Java 4 IDE requires the Java™ 2 Platform, Standard Edition (the Java 2

SDK). When you install the IDE, the installer searches your system for the Java 2

SDK software and will notify you and stop the installation if the correct version is

not installed on your system. You can download the correct version of the Java 2

SDK from the Java Developer’s portal at http://java.sun.com/j2se/ .

What You Need to Create and Run the Tutorial

You need the following software to create and run the tutorial. Some of these items

are included in the default installation of Forte for Java 4, Enterprise Edition. Check

the release notes on http://forte.sun.com/ffj/documentation/index.html
for supported versions of these items:

■ A web browser

You need a web browser to view the pages of the test application client.

■ A web server

The Forte for Java 4 test client is a web application, which requires a web server.

This tutorial uses an embedded version of Tomcat, version 4.0, within the IDE

that provides the functionality of a web server for testing purposes.

■ Database software—PointBase Server 4.2 Restricted Edition

The tutorial application accesses a database. This tutorial describes how to use the

PointBase Network Server software that can be installed with the Forte for Java 4

IDE. If you did not install Forte for Java 4 yourself, you can verify whether

PointBase was installed by looking for a pointbase directory under the Forte for

Java 4 home directory. If PointBase was not installed, you can run the installer

again to install it.

■ An application server

You need an application server to deploy the tutorial’s Java 2 Platform, Enterprise

Edition (J2EE™) application. This tutorial describes how to use the J2EE

Reference Implementation (J2EE RI) server. You must use the version of the J2EE

RI, version 1.3.1, that is included in Forte for Java 4, Enterprise Edition

installation. This version of the J2EE RI server also requires the PointBase

Network Server database.

The IDE is by default configured to use J2EE RI. To verify this, see “Verifying the

Correct Default Application Server and Web Server” on page 7.
2 Forte for Java 4, Enterprise Edition Tutorial • June 2002

http://java.sun.com/j2se/
http://forte.sun.com/ffj/documentation/index.html

Starting the Forte for Java 4 IDE

Start the Forte for Java 4 IDE by running the program executable, as described in the

following sections, and more fully in the Forte for Java 4, Enterprise Edition Getting
Started Guide.

Starting the IDE on Solaris, UNIX, and Linux

Environments

After installation, a runide.sh script is located in the forte4j-home/bin directory.

Launch this script by typing the following in a terminal window:

For ways to customize this script, see “Modifying the Session With Command-Line

Switches” on page 4.

Starting the IDE on Microsoft Windows

After installation, there are three ways to start the IDE:

■ Double-click the Forte for Java 4.0 EE icon on your desktop.

This runs the runidew.exe executable, which launches the IDE without a

console window. This executable exists in the forte4j-home\bin directory, along

with an alternative executable—runide.exe . The runide.exe icon launches the

IDE with a console window that includes standard error and standard output

from the IDE. On the console, you can press Ctrl-Break to get a list of running

threads or Ctrl-C to immediately terminate the program.

■ Choose Start → Programs → Forte for Java 4.0 EE → Forte for Java.

■ Run any of the executables from the command line.

For example:

See the next section for information on switches.

$ sh runide.sh

C:\> runide.exe [switch]
Chapter 1 Getting Started 3

Modifying the Session With Command-Line

Switches

TABLE 1-1 describes the switches that you can use to modify how you launch the IDE.

This information is also available from the Forte for Java 4, Enterprise Edition Getting
Started Guide, but is provided here for your convenience.

■ On Microsoft Windows systems

You can set options when running the IDE on the command line.

■ In Solaris, Linux, and other UNIX environments

You can modify the ide.sh file in the bin subdirectory of the installation

directory, or you can create your own shell script that calls ide.sh with options.

TABLE 1-1 runide Command-Line Switches

Switch Meaning

-classic Uses the classic JVM.

-cp:p addl-classpath Adds a class path to the beginning of the Forte

for Java 4 class path.

-cp:a addl-classpath Adds a class path to the end of the Forte for

Java 4 class path

-fontsize size Sets the font size used in the GUI to the specified

size.

-locale language [:country[:variant]] Uses the specified locale for the session instead of

the default locale.

-J jvm-flags Passes the specified flag directly to the JVM.

(There is no space between -J and the

argument.)

-jdkhome jdk-home-dir Uses the specified Java 2 SDK instead of the

default SDK.

-h or -help Opens a GUI dialog box that lists the command-

line options.

-hotspot or -client or -server or

-classic or -native or -green
Uses the specified variant of JVM.
4 Forte for Java 4, Enterprise Edition Tutorial • June 2002

Specifying Your User Settings Directory

The Forte for Java 4 IDE stores your individual projects, samples, and IDE settings in

your own special directory. This enables individual developers to synchronize their

development activities, while keeping their own personal work and preferences

separate.

■ In Solaris, UNIX, or Linux environments

If you don’t explicitly specify a user settings directory with the -userdir
command-line switch, user settings are located by default in user-
home/ffjuser40ee .

■ On Microsoft Windows systems

At first launch of the Forte for Java 4 IDE, you are prompted to specify a user

settings directory. Use a complete specification, for example, C:\MyWork .

This value is stored in the registry for later use. For a given session, you can

specify a different user settings directory by using the -userdir command-line

switch when launching the IDE.

-single Runs the IDE in single-user mode. Enables you to

launch the IDE from forte4j-home instead of from

your user settings directory.

- ui UI-class-name Runs the IDE with the given class as the IDE’s

look and feel.

-userdir user-directory Uses the specified directory for your user settings

for the current session. See the next section for

more information.

TABLE 1-1 runide Command-Line Switches (Continued)

Switch Meaning
Chapter 1 Getting Started 5

Understanding the Forte for Java 4
Directory Structure

When you install the Forte for Java 4 software, the subdirectories described in

TABLE 1-2 are included in your installation directory.

TABLE 1-2 Forte for Java 4 Directory Structure

Directory Purpose

beans Contains JavaBeans™ components installed in the IDE.

bin Includes Forte for Java 4 launchers (as well as the ide.cfg
file on Microsoft Windows installations).

docs Contains the Forte for Java 4 help files and other

miscellaneous documentation. (Release notes are found under

forte4j-home.)

examples Contains source files and readme files for enterprise edition

examples.

iPlanet Contains files used by the iPlanet plug-ins.

j2sdkee1.3.1 Contains the J2EE Reference Implementation, if installed.

javadoc The directory mounted by default in the IDE’s Javadoc

repository. Both Javadoc provided with the IDE and user-

created Javadoc are stored here.

jwsdp Contains Java Web Services Developer’s Pack software (UDDI

internal registry).

lib Contains JAR files that make up the IDE’s core

implementation and the open APIs.

modules Contains JAR files of Forte for Java 4 modules.

pointbase Contains the executables, classes, databases, and

documentation for the PointBase Server 4.2 Restricted Edition

database (if installed).

sampledir Contains source files and readme files for several examples.

sources Contains sources for libraries that might be redistributed with

user applications.

system Includes files and directories used by the IDE for special

purposes. Among these are ide.log , which provides

information useful when seeking technical support.

tomcat401 Contains sources for the Tomcat, 4.01, web server.
6 Forte for Java 4, Enterprise Edition Tutorial • June 2002

When you launch the Forte for Java 4 software, the subdirectories in TABLE 1-3 are

installed in your user settings directory. Most of them correspond to subdirectories

in the Forte for Java 4 home directory, and are used to hold your settings.

Verifying the Correct Default
Application Server and Web Server

The DiningGuide tutorial uses the J2EE RI application server. The test application

generated for testing DiningGuide’s web services uses the Tomcat web server. Both

of these servers are set as the default servers by the installer. However, if you use

other servers, you should make these servers the default servers before you test or

run the DiningGuide application.

To verify that the J2EE RI application server and Tomcat web server are the default

servers:

1. In the Forte for Java 4 IDE, click the Explorer’s Runtime tab.

TABLE 1-3 Directory Structure for the User Settings Directory

Directory Purpose

beans Contains user settings for JavaBeans components installed in

the IDE.

javadoc Contains user settings for Javadoc files installed in the IDE.

lib Contains user settings for the system lib files.

modules Contains modules downloaded from the Update Center.

sampledir The directory mounted by default in the Filesystems pane of

the Explorer. Objects you create in the IDE are saved here

unless you mount other directories and use them instead.

sampledir/examples Contains several NetBeans example applications.

SunONE Contains user settings for the iAS application server.

system Contains user settings for system files and directories.

tomcat401_base Contains user settings for your work with JSP pages.
Chapter 1 Getting Started 7

2. Expand the Server Registry node and its Default Servers subnode.

■ If the Default Servers node looks like this, then the IDE is using the correct

servers.

■ If anything other than RI Instance 1 and Tomcat 4.0 are listed, then:

i. Right-click the default server that is wrong and choose Set Default Server.

The Select Default Web (or Application) Server dialog box is displayed.

ii. Select the correct server and click OK.

Creating the Tutorial Database Tables

Before you can start the Forte for Java, Enterprise Edition tutorial, you must create

and install two database tables in the PointBase Network Server database. Use the

SQL script in Appendix B to create these tables. A script file, rest_pb.sql , is also

available within the diningguide.zip file for the DiningGuide tutorial, available

from:

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

The script in Appendix B creates the database schemas shown in TABLE 1-4.

TABLE 1-4 DiningGuide Database Tables

Table Name Columns
Primary
Key Other

Restaurant restaurantName yes

cuisine

neighborhood

address

phone

description

rating
8 Forte for Java 4, Enterprise Edition Tutorial • June 2002

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

The Restaurant table contains the records shown in TABLE 1-5.

The CustomerReview table contains the records shown in TABLE 1-6.

Install the tutorial tables in the default PointBase database according to the

following instructions.

Note – If you have already started the Forte for Java IDE, you can either leave it

running while you create your database tables, or quit and restart after you finish.

1. Start the PointBase Server.

■ In Solaris or Linux environments: Run the Server file in the

forte4j-home/pointbase/server directory.

■ On Microsoft Windows: Choose Start → Forte for Java 4.0 EE → PointBase →
Network Server → Server or double-click the server.bat file in the

forte4j-home/pointbase/server directory.

CustomerReview restaurantName yes Compound primary key with

CustomerName; references

Restaurant(restaurantName)

customerName yes

review

TABLE 1-5 Restaurant Table Records

restaurant-
Name cuisine neighborhood address phone description rating

French

Lemon

Mediterranean Rockridge 1200 College

Avenue

510 888

8888

Very nice

spot.

5

Bay Fox Mediterranean Piedmont 1200

Piedmont

Avenue

510 888

8888

Excellent. 5

TABLE 1-6 CustomerReview Table Records

restaurantName customerName comment

French Lemon Fred Nice flowers.

French Lemon Fred Excellent Service

TABLE 1-4 DiningGuide Database Tables (Continued)

Table Name Columns
Primary
Key Other
Chapter 1 Getting Started 9

2. Start the PointBase Console.

■ In Solaris or Linux environments: Run the Console file in the

forte4j-home/pointbase/client directory.

■ On Microsoft Windows: Choose Start → Forte for Java 4.0 EE → PointBase →
Client Tools → Console or double-click the console.bat file in the

forte4j-home/pointbase/client directory.

The Connect To Database dialog box appears, showing values for the PointBase

driver to the default sample database.

3. Click OK.

The PointBase Console is displayed.

4. Copy the PointBase script from Appendix B and paste it into the SQL entry
window of the Console.

Alternatively, if you have the SQL script file from the diningguide.zip file, you

can choose File → Open and open the rest_pb.sql script.

5. Choose SQL → Execute All.

The message window confirms that the script was executed. (Ignore the initial

messages beginning “Cannot find the table…” These appear because there are DROP

statements for tables that have not been created yet. These DROP statements will be

useful in the future if you want to rerun the script to initialize the tables.)

6. Test that you have created the table by clearing the SQL entry window
(Window → Clear Input) and typing:

select * from Restaurant;
10 Forte for Java 4, Enterprise Edition Tutorial • June 2002

7. Choose SQL → Execute.

Your console should display the Restaurant table.

Note – If your display does not look like this table, choose Window → Windows to

change the display type.

8. Close the PointBase Console window.

Now, you’re ready to start the tutorial.
Chapter 1 Getting Started 11

12 Forte for Java 4, Enterprise Edition Tutorial • June 2002

CHAPTER 2

Introduction to the Tutorial

In the process of creating the tutorial example application, you will learn how to

build a simple J2EE application using Forte for Java 4, Enterprise Edition features.

This chapter describes the application you will build, first describing its

requirements, and then presenting an architecture that fulfills the requirements. The

final section describes how you use Forte for Java 4, Enterprise Edition features—the

EJB Builder, the test application facility, and the New Web Service wizard—to create

the application.

This chapter is organized into the following sections:

■ “Functionality of the Tutorial Application,” which follows

■ “User’s View of the Tutorial Application” on page 15

■ “Architecture of the Tutorial Application” on page 18

■ “Overview of Tasks for Creating the Tutorial Application” on page 21

Functionality of the Tutorial Application

The tutorial application, DiningGuide, is a simple dining guide application that

enables users to view a list of available restaurants and their features. The user can

also view a list of a selected restaurant’s customer reviews, and add a review to a

restaurant’s record. The restaurant features include the restaurant name, its cuisine

type, its neighborhood, address, and phone number, a brief description of the

restaurant, and a rating number (1 - 5).

The user interacts with the application’s interface as follows:

■ The user views a complete list of restaurants

■ The user requests a list of customer reviews for a particular restaurant

■ The user writes a review and adds it to the restaurant’s list of reviews
13

Application Scenarios

The interaction of DiningGuide begins when the user executes a client page listing

all the restaurant records in the database. The interaction ends when the user quits

the application’s client. A simple Swing client is provided to illustrate how a user

can interact with the application’s features. However, other types of clients, such as

a web client or another application, could access the business methods of the

DiningGuide application.

The following scenarios illustrate interactions that happen within the application,

and the application’s requirements.

1. The user executes the application’s RestaurantTable class.

The application displays the DiningGuide Restaurant Listing window, which

displays a list of all restaurants, their names, cuisine type, location, phone

number, a short review comment, and a rating from 1 to 5. On the page is a

button labeled View Customer Comments.

2. The user selects a restaurant record in the list and clicks the View Customer

Comments button for a given restaurant.

The application displays a All Customer Reviews By Restaurant Name window

with a list of all the reviews submitted by customers for the selected restaurant.

3. On the customer review window, the user types text into the Customer Name and

Review fields and clicks the Submit Customer Review button.

The application adds the customer’s name and review text to the

CustomerReview database table, and redisplays the All Customer Reviews By

Restaurant Name window with the new record added.

4. The user returns to the Restaurant Listing window, selects another restaurant, and

clicks the View Customer Comments button.

The application displays a new All Customer Reviews By Restaurant Name

window showing all the reviews for the selected restaurant.
14 Forte for Java 4, Enterprise Edition Tutorial • June 2002

Application Functional Specification

The following items list the main functions for a user interface of an application that

supports the application scenarios.

■ A master view of all restaurant data through a displayed list

■ A button on the master restaurant list window for retrieving all customer review

data for a given restaurant

■ A master view of all customer review data for a given restaurant

■ A button on the customer review list window for adding a new review

■ Text entry fields on the customer review list window for typing in a new

customer name and new customer review for the current restaurant

■ A button on the customer review list window for submitting the finished review

data to the database

User’s View of the Tutorial Application

The user’s view of the application illustrates how the scenarios and the functional

specification, described in “Functionality of the Tutorial Application” on page 13 are

realized.

1. In the Forte for Java 4 Explorer, right-click the RestaurantTable node and
choose Execute.

The IDE switches to Runtime mode. A Restaurant node appears in the execution

window. Then, the RestaurantTable window is displayed, as shown:

This window displays the data from the Restaurant table created in “Creating the

Tutorial Database Tables” on page 8.
Chapter 2 Introduction to the Tutorial 15

2. To view the customer reviews for a given restaurant, select the restaurant name
and click the View Customer Comments button.

For example, select the Bay Fox restaurant. The CustomerReviewTable window is

displayed.

In this case, no records are shown, because none are in the database. Refer to

TABLE 1-6.

3. To add a review, type in a customer name and some text for the review and click
the Submit Customer Review button.

For example, type in New User for the name and I’m speechless! for the review.

The application redisplays the customer review window, as shown:

Now, display the reviews of the other restaurant.
16 Forte for Java 4, Enterprise Edition Tutorial • June 2002

4. On the Restaurant List window, select French Lemon and click the View Customer
Comments button.

A new customer review list window is displayed, showing the comments for the

French Lemon restaurant.

Two customer review records are displayed. Refer to TABLE 1-6 for confirmation.

5. Continue to add and view customer review records.

6. When you are done, quit the application by closing any of the application’s
windows.

7. To verify that the new customer review records were written to the database, start
the PointBase database console.

The PointBase server must first be running. Refer to the procedures in “Creating the

Tutorial Database Tables” on page 8 for information.

8. In the PointBase Console, type the following statement:

select * from CustomerReview;

9. Choose SQL → Execute.

Your console should display the CustomerReview table with whatever reviews you

entered, for example:
Chapter 2 Introduction to the Tutorial 17

Architecture of the Tutorial Application

The heart of the tutorial application is the EJB tier that contains two entity type

enterprise beans, two detail classes, and a session bean. The entity beans represent

the two DiningGuide database tables (Restaurant and CustomerReview); the two

detail classes mirror the entity bean fields and include getter and setter methods for

each field. The detail classes are used to reduce the number of method calls to the

entity beans when retrieving database data. The session bean manages the

interaction between the client (by way of the web service) and the entity beans.

FIGURE 2-1 shows the DiningGuide application architecture.
18 Forte for Java 4, Enterprise Edition Tutorial • June 2002

FIGURE 2-1 DiningGuide Application Architecture

In FIGURE 2-1, the client includes a client proxy, which uses the SOAP runtime system

to communicate with the SOAP runtime system on the web server. Requests are

passed as SOAP messages. The web service translates the SOAP messages into calls

on the EJB tier’s session bean’s methods. The session bean passes its responses back

to the web service, which translates them into SOAP messages to give to the client

proxy and ultimately get translated into a display of data or action.

A SOAP request is an XML wrapper that contains a method call on the web service

and input data in serialized form.

Application Elements

The elements shown in FIGURE 2-1 are:

■ An application service tier (an EJB tier)

You build and test the EJB tier before you build anything else in the tutorial. The

EJB tier consists of:

■ Two entity enterprise beans that use container-managed persistence (CMP) to

represent the two database tables of the application

■ Two detail classes to hold returned database records

■ A stateless session enterprise bean to manage the requests from the client and

to format the objects returned to the client.
Chapter 2 Introduction to the Tutorial 19

■ The web service tier

■ A web module containing Servlets and JSP pages for exercising the session

bean’s methods

This is automatically created when a test application is built for the session

bean.

■ A web service logical node that represents the entire web service and enables

modification and configuration of the web service

■ A client proxy that is generated when the web service is deployed

■ A WSDL (Web Services Descriptive Language) file that described the web

service for a client

■ The client

The client component is a Swing client that displays the application pages. In

Chapter 5, you copy code from provided client pages that instantiate the client

proxy created in the web service in Chapter 4.

EJB Tier Details

The EJB tier of the DiningGuide application contains two entity-type enterprise

beans, two detail classes, and a session bean used to manage the interaction between

the client and the entity beans.

■ Restaurant CMP EJB component

The Restaurant bean is an entity bean that uses container-managed persistence

(CMP) to represent the data of the Restaurant database table.

■ Customerreview CMP EJB component

Also a CMP-type entity bean, the Customerreview entity bean represents the

data from the CustomerReview database table.

■ RestaurantDetail class

This component has the same fields as the Restaurant entity bean, plus getter

and setter methods for each field for retrieving this data from the entity bean’s

remote reference. Its constructor instantiates an object that represents the

restaurant data. This object can then be formatted into a JSP page, HTML page, or

Swing component for the client to view.

■ CustomerreviewDetail class

This component serves the same function for the Customerreview entity bean

that the RestaurantDetail class serves for the Restaurant entity bean.

■ DiningGuideManager session EJB component

This component is a stateless session bean that is used to manage the interaction

between the client and the entity beans.
20 Forte for Java 4, Enterprise Edition Tutorial • June 2002

Overview of Tasks for Creating the
Tutorial Application

The tutorial building process is divided into three chapters. In the first (Chapter 3),

you create the EJB tier and use the IDE’s test application facility to test each

enterprise bean as you work. Then you create a session bean to manage traffic. This

is a common model when creating the web services and the client manually.

In the second chapter (Chapter 4), you create a web service and specify which of the

EJB tier’s business methods to reference. You deploy the web service, which

generates a client proxy, and then you test the client proxy.

In the final chapter (Chapter 5), you install two provided Swing classes into the

application and execute them to test the application.

Creating the EJB Components

In Chapter 3 you learn how to use Forte for Java 4 features to:

■ Build entity and session beans quickly with the EJB Builder

■ Generate classes (with getter and setter methods) from a database schema

■ Use the test application facility to assemble a test J2EE application from enterprise

beans

■ Add EJB references to a J2EE application

■ Deploy the test application to the J2EE Reference Implementation application

server

■ Exercise enterprise bean methods from the test client page created by the test

application facility.

Using the EJB Builder

The EJB Builder wizard automatically creates the various components that make up

an enterprise bean, whether it’s a stateless or stateful session bean, or an entity bean

with container-managed persistence (CMP) or bean-managed persistence (BMP). In

Chapter 3, you create two CMP entity beans based on existing database tables, and a

stateless session bean.

When you create the entity beans, you learn how to connect to a database during the

creation process, and then generate an entity bean whose fields represent the table’s

columns. The basic parts of the bean are generated into the Forte for Java 4 Explorer
Chapter 2 Introduction to the Tutorial 21

with Java code already generated for the home interface, remote interface, bean

class, and (if applicable) the primary key class. You learn how to edit and modify the

bean properly by using the logical bean node, which represents the bean as a whole.

You learn to add create, finder, and business methods using the EJB Builder’s GUI

features.

Creating the Detail Classes

The detail classes must have the same fields as the entity beans. You create two

classes and add the appropriate bean properties to them. While adding each

property, you activate an option that automatically generates accessor methods for

the property. This way, you obtain the getter and setter methods the application

requires. Then you code each class’s constructor to instantiate the properties. Finally,

you add code to each of the two entity beans to return an instance of its

corresponding detail class.

Using the Test Application Facility

The Forte for Java 4 IDE includes a facility for testing enterprise JavaBean

components without your having to create a client for this purpose. This facility uses

the J2EE Reference Implementation as the application server and deploys the

enterprise bean as part of a J2EE application that includes a web module and client

JSP pages. An HTML page coordinates these JSP pages so that, from a web browser,

you can create an instance of the bean and then exercise its business methods.

You create test applications for all three of the enterprise beans separately. For the

entity beans, the test application generates a J2EE application that contains a web

module, which contains the automatically generated JSP pages for the client’s use

from a web browser, and an EJB module for the entity bean. The session bean’s EJB

module must also contain the EJB modules of the entity beans, because it calls

methods on those entity beans. You add the entity bean references to the session

bean’s EJB module using commands in the IDE. The EJB module created while

creating the test application is referenced later by the web service.

When you test the session bean in a web browser, you can exercise all the

application’s business methods. At the end of Chapter 3 are guidelines for using the

test client apparatus to guide you if you want to create your own web service and

client manually.
22 Forte for Java 4, Enterprise Edition Tutorial • June 2002

Creating the Tutorial’s Web Service

In Chapter 4 you learn how to use Forte for Java 4 features to:

■ Create a logical web service

■ Specify which session business methods are to be referenced by the web service

■ Create a J2EE application to contain the web service

■ Generate the web service’s runtime classes and client pages

■ Generate the web service’s client proxy

Creating a Web Service

A web service is a logical entity that represents the entire set of objects in the web

service, and facilitates modifying and configuring the web service. You create a web

service in the Explorer using the New wizard to define its name and package

location. As you create the web service, the wizard prompts you to specify the

business methods you want the web service to reference.

You inform the web service of the location of the Apache SOAP runtime by

specifying its URL as a property of the web service. You then generate the web

service’s runtime classes, which are EJB components that implement the web service.

Creating a Test Client for the Tutorial

You create a test client that consists of front-end client and a back-end J2EE

application. You then add references to the session bean’s EJB module and to the

web service. This action makes the web service’s WAR and EJB JAR files available,

so you can customize their properties. One property that you customize is the Web

Context property. This completes the DiningGuide’s J2EE application, and you are

ready to deploy it.

Deploying the Web Service and Creating a Test Client

When you deploy the J2EE application that contains the web service, the IDE

automatically generates a client proxy and supporting files. The supporting files

include a JSP page for each referenced method, a JSP error page, and a welcome

page.
Chapter 2 Introduction to the Tutorial 23

Testing the Web Service

You use an IDE command to deploy the DiningGuide application. This starts the

application server and displays the test client’s welcome page that displays all the

operations on one page. The generated JSP pages contain input fields when an input

parameter is required, and an Invoke button to execute the operation. You use these

means to test how the web service calls each of the session bean’s methods.

Making a Web Service Available to Other Developers

Although this tutorial does not describe how to publish the web service to a UDDI

registry, it does describe an informal method for enabling other developers to use

the web service for testing purposes. You learn how to generate a WSDL file, which

you can then make available, either by placing it on a server, or by distributing it

some other way, such as by email. The target developers can generate a client proxy

from this file and discover which methods are available on your web service. They

can then build a client accordingly, and, if you provide them with the URL of your

deployed web service, they can test their client against your web service.

The Forte for Java 4 IDE also provides a single-user internal UDDI registry for

testing purposes. The StockApp example, available from the Examples and Tutorials

page of the Forte for Java Developer’s portal, demonstrates how to publish a web

service using this device. The Examples and Tutorials page is at:

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

See Building Web Services in the Forte for Java Programming series for complete

information about publishing a web service to a UDDI registry.

Installing and Using the Provided Client

Code for a simple Swing client that demonstrates the functionality of the

DiningGuide application is provided in Appendix A. This client consists of a Swing

class for each of the database tables. You create two classes and then replace their

default code with the provided code. Then, you simply execute the main class.

You learn by examining the provided code how a client accesses the application’s

methods. First, the client must instantiate the client proxy. This makes the client

proxy’s methods available to the client. These methods (see FIGURE 2-1) are used by

the SOAP runtime to access the methods of the application’s EJB tier.
24 Forte for Java 4, Enterprise Edition Tutorial • June 2002

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

End Comments

This tutorial application is designed to be a running application that illustrates the

main features of Forte for Java 4, Enterprise Edition, while still brief enough for you

to create in a short time (perhaps a day). This places certain restrictions on its scope,

for example:

■ There is no error handling

■ There are no debugging procedures

■ Publishing the web service is not described

Although the tutorial application described in this book is designed to be a simple

application that you can complete quickly, you might want to import the entire

application, view the source files, or copy and paste method code into methods you

create. The DiningGuide application is accessible from the Examples and Tutorials

page of the Forte for Java 4 Developer’s portal at:

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html
Chapter 2 Introduction to the Tutorial 25

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

26 Forte for Java 4, Enterprise Edition Tutorial • June 2002

CHAPTER 3

Building the EJB Tier of the
DiningGuide Application

This chapter describes, step by step, how to create the EJB tier of the DiningGuide

tutorial application. Along the way, you learn how to use the EJB Builder to create

both entity and session beans, and how to use the IDE’s test mechanism to test the

beans. The topics covered in this chapter are:

■ “Overview of the Tutorial’s EJB Tier,” which follows

■ “Creating Entity Beans With the EJB Builder” on page 32

■ “Creating Detail Classes to View Entity Bean Data” on page 44

■ “Testing the Entity Beans” on page 48

■ “Creating a Session Bean With the EJB Builder” on page 59

■ “Testing the Session Bean” on page 71

■ “Comments on Creating a Client” on page 77

By the end of this chapter, you will be able to run the whole EJB tier of the

DiningGuide application as a deployed test application.

After you have created the EJB tier, you are free to create your own web services and

client pages. Alternatively, you can continue on to Chapter 4, to learn how to create

the application’s web services using the Forte for Java 4 Web Services features.

Overview of the Tutorial’s EJB Tier

In this chapter, you create the module that is the heart of the tutorial application,

namely, its EJB tier. As you create each component, you test it using the IDE’s test

application facility, which automatically creates a test web service and test client.

The EJB tier you create will include:

■ a Restaurant entity bean

■ a Customerreview entity bean

■ a DiningGuideManager session bean

■ a RestaurantDetail bean

■ a CustomerreviewDetail bean
27

For a complete discussion of the role of the EJB tier within J2EE architecture, see

Building Enterprise JavaBeans Components in the Forte for Java 4 Programming series.

That document provides full descriptions of all the bean elements, and explains how

transactions, persistence, and security are supported in enterprise beans.

To examine an application that also uses an EJB tier and a web service generated

from it, see the PartSupplier example on the Forte for Java 4 examples page,

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

The Entity Beans

An entity bean provides a consistent interface to a set of shared data that defines a

concept. In this tutorial, there are two concepts: restaurant and customer review. The

Restaurant and Customerreview entity beans that you create represent the

database tables you created in Chapter 1.

Entity beans can have either container-managed persistence (CMP) or bean-managed

persistence (BMP). With a BMP entity bean, the developer must provide code for

mapping the bean’s fields to the database table columns. With a CMP entity bean,

the EJB execution environment manages persistence operations. In this tutorial, you

use CMP entity beans. Using the IDE’s EJB Builder wizard, you connect to the

database and indicate which columns to map. The wizard creates the entity beans

mapped to the database.

The EJB Builder creates the CMP entity bean’s framework, including the required

home interface, remote interface, and bean class. The wizard also creates a logical

node to organize and facilitate customization of the entity bean.

You manually define the entity bean’s create, finder, and business methods. When

you define these methods, the IDE automatically propagates the method to the

appropriate bean components. For example, a create method is propagated to the

bean’s home interface and a corresponding ejbCreate method to the bean’s class.

When you edit the method, the changes are propagated as well.

With finder methods, you must define the appropriate database statements to find

the objects you want. The EJB 2.0 architecture defines a database-independent

version of SQL, called EJB QL, which you use for your statements. At deployment,

the J2EE RI plugin translates the EJB QL into the SQL appropriate for your database

and places the SQL in the deployment descriptor.
28 Forte for Java 4, Enterprise Edition Tutorial • June 2002

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

The Session Bean

Entity beans represent shared data, but session beans access data that spans concepts

and is not shared. Session beans can also manage the steps required to accomplish a

particular task. Session beans can be stateful or stateless. A stateful session bean

performs tasks on behalf of a client while maintaining a continued conversational

state with the client. A stateless session bean does not maintain a conversational state

and is not dedicated to one client. Once a stateless bean has finished calling a

method for a client, the bean is available to service a request from a different client.

In the DiningGuide application, client requests might include obtaining data on all

the restaurants in the database or finding all the customer reviews for a given

restaurant. Submitting a review for a given restaurant is another client request.

These requests are not interrelated, and don’t require maintenance of a

conversational state. For these reasons, the DiningGuide tutorial uses a stateless

session bean to manage the different steps required for each request.

The session bean repeatedly builds collections of restaurant and customer review

records to satisfy a client’s request. This task could be accomplished by adding

getter and setter methods for each field onto the entity beans, but this approach

would require calling a method for every field each time the session bean has to

retrieve a row of the table. To reduce the number of method calls, this tutorial uses

special helper classes, called detail classes, to hold the row data.

The Detail Classes

A detail class has the same fields as the corresponding entity bean, plus getter and

setter methods for each field. When the session bean looks up an entity bean, it uses

the corresponding detail class to create an instance of each remote reference returned

by the entity bean. The session bean just calls the detail class’s constructor to

instantiate a row of data for viewing. In this way, the session bean can create a

collection of row instances that can be formatted into an HTML page for the client to

view.

FIGURE 3-1 shows graphically how the detail classes work.
Chapter 3 Building the EJB Tier of the DiningGuide Application 29

FIGURE 3-1 Function of a Detail Class

The numbered items in FIGURE 3-1 signify the following actions:

1. The web container passes a client’s request for all restaurant data to the

DiningGuideManager session bean.

2. The session bean calls the Restaurant entity bean’s findAll method to

perform a lookup on the Restaurant entity bean.

3. The findAll method obtains all available remote references to the entity bean.

4. For each remote reference returned, the session bean calls the Restaurant bean’s

getRestaurantDetail business method to fetch the RestaurantDetail class.

5. The getRestaurantDetail method returns a RestaurantDetail object,

which is added to the collection.

6. The session bean returns a collection of all RestaurantDetail objects to the

web container, which formats the data appropriately for the client to view.
30 Forte for Java 4, Enterprise Edition Tutorial • June 2002

Summary of Steps

Creating the EJB tier requires six tasks:

1. Creating the entity beans

First, you create CMP entity bean skeletons with the EJB Builder wizard. Then

you add their create and finder methods and simple business methods for testing

purposes.

2. Creating detail classes that have the same fields as the entity beans

You create regular JavaBeans Restaurant and Customerreview classes and the

getter and setter methods for each field.

3. Creating business methods on the entity beans to fetch the detail classes

4. Testing the entity beans’ methods with the IDE’s test application facility

Viewing the automatically generated test client in a web browser, you exercise the

create method to create an instance of the bean and make its business methods

available. Then you exercise the bean’s business methods.

5. Creating the session bean

You create a stateless session bean skeleton with the EJB Builder, and modify the

bean’s create method to perform a lookup on the entity beans. Then you create

getter methods for constructing collections of detail objects (from the detail

classes) for each entity bean and a method to create a customer review record in

the database. You also create two dummy business methods that are required by

the SOAP runtime.

6. Using the test application facility again to test the session bean

In the EJB module’s property sheet, you add references to the CMP entity beans.

Then you create a test application and add the EJB modules to the test

application’s EJB module. To conclude, you use the test client to create an instance

of the session bean and then exercise its methods.

Note – Before you can begin work on the tutorial application, you must first have

performed all the setup steps described in Chapter 1.
Chapter 3 Building the EJB Tier of the DiningGuide Application 31

Creating Entity Beans With the EJB
Builder

Create two entity beans, Restaurant and Customerreview , to represent the two

database tables you created in Chapter 1.

In version 2.0 of the EJB architecture, entity beans can have local interfaces, remote

interfaces, or both. The criterion for deciding which to use rests on whether the

client that calls the bean’s methods is remote or local to the bean. In this tutorial, you

create the entity beans with both remote and local interfaces, for flexibility regarding

how the web service will access the beans’ methods. Two possibilities are the session

bean accesses the beans’ methods (using local interfaces), or the web service accesses

the methods directly (using remote interfaces).

Tip – For more details about working with the EJB Builder, see the Forte for Java 4

help topics on EJB components.

Note – The source code for the completed entity beans is provided in Appendix A.

Creating the Restaurant Entity Bean

First, create a directory to mount as a filesystem to contain the application. Next,

create a package for the EJB tier. Finally, create the entity beans within the package.

Note – The following instructions assume that the Forte for Java 4 IDE and the

PointBase server (see Step 1 under “Creating the Tutorial Database Tables” on

page 8) are both running.

To create the Restaurant entity bean:

1. Somewhere on your file system, create a directory and name it DiningGuide .

2. In the Forte for Java 4 IDE, choose the File → Mount Filesystem.

The New wizard is displayed.

3. Select Local Directory, and click Next.

The Select Directory pane of the New wizard is displayed.
32 Forte for Java 4, Enterprise Edition Tutorial • June 2002

4. Use the Look In file finder to find the DiningGuide directory, select it, and click
Finish.

The new directory (for example, c:\DiningGuide) is mounted in the Explorer.

5. Right-click the new filesystem you just mounted and choose New → Java Package.

You will use this package to hold the EJB tier of the application.

6. Name the new package Data and click Finish.

The new Data package appears under the DiningGuide directory.

7. Right-click the new Data package and choose New → J2EE → CMP Entity EJB.

The CMP Entity Bean Name and Properties pane of the New wizard (used by the

EJB Builder module) is displayed. If you click the Help button on any pane of the

wizard, you can get context-sensitive help on creating CMP entity beans.

8. Name the new CMP bean Restaurant and select the following options:

■ Source for Entities and Fields: Table from Database Connection
■ Component Interfaces: Both Remote and Local Interfaces

The New wizard should look like this.

9. Click Next.

This displays the Table from Database pane. The connection to the database you

created in “Creating the Tutorial Database Tables” on page 8 is displayed as a broken

square () that is labeled jdbc:pointbase:server://localhost:9092/
sample [pbpublic on PBPUBLIC].
Chapter 3 Building the EJB Tier of the DiningGuide Application 33

10. Select the broken square and click the Connect to Database button.

The square is displayed as whole (), indicating the connection exists.

Note – If you did not get this result, you probably forgot to start the PointBase

Network Server. Choose Tools → PointBase Network Server → Start Server. Then

click the Add Connection button to add the connection.

11. Expand the database connection node and the Tables node under it, and select
the RESTAURANTtable.

12. Click Next.

The CMP Fields pane is displayed. You see a side-by-side display of the columns of

the Restaurant database table and the corresponding Java fields that the columns

will be mapped to when the wizard creates the Restaurant entity bean.

13. Accept all the default labels and click Next.

The CMP Entity Bean Class Files pane is displayed, listing the parts of the

Restaurant bean that will be created. Notice that the EJB Builder wizard has

automatically named the new entity bean with the same name as the database table.
34 Forte for Java 4, Enterprise Edition Tutorial • June 2002

14. Click Finish.

The new Restaurant entity bean and all its parts are created and displayed in the

Explorer window.

Five of the parts are interfaces and one is the bean class. The sixth part is the logical
node that groups all the elements of the enterprise bean together and facilitates

working with them.

15. Choose File → Save to save your work.

Creating the Customerreview Entity Bean

Create the Customerreview entity bean as you did the Restaurant bean, using

the following steps:

1. Right-click the new Data package and choose New → J2EE → CMP Entity EJB.

2. Name the new CMP bean Customerreview and select the following options:

■ Source for Entities and Fields: Table from Database Connection
■ Component Interfaces: Both Remote and Local Interfaces

3. Click Next.

The Table from Database pane is displayed.

If the sample database is still connected, you can tell this by the square () icon,

Proceed to Step 4.

If the connection is a broken square (), select the broken square and click the

Connect to Database button.

4. Open the database node and the Tables folder, select the CUSTOMERREVIEWtable,
and click Next.

Logical node

Local interface

Bean class

Local home interface

Remote interface

Remote home interface
Chapter 3 Building the EJB Tier of the DiningGuide Application 35

5. Click Next on the CMP Fields pane, and click Finish on the last pane (CMP Entity
Bean Class Files pane).

The Customerreview entity bean is displayed in the Data package in the Explorer.

Notice that there is an additional component, the CustomerreviewKey bean. This

bean is automatically created when the entity bean has a composite primary key.

(See TABLE 1-4 in Chapter 1 to confirm the composite primary key in this table.)

6. Choose File → Save All to save your work.

Logical node

Local interface

Bean class

Primary key class

Local home interface

Remote home interface

Remote interface
36 Forte for Java 4, Enterprise Edition Tutorial • June 2002

Creating Create Methods for CMP Entity Beans

Create the create methods for both entity beans, adding parameters and code to

initialize the fields of the beans’ instances.

Creating the Restaurant Bean’s Create Method

Create the create method for the Restaurant entity bean as follows:

1. In the Explorer, right-click the Restaurant(EJB) logical node (the bean icon).

2. Choose Add Create Method from the contextual menu.

The Add New Create Method dialog box is displayed.

3. Using the Add button, create seven new parameters, one for each column of the
Restaurant table:

restaurantname (java.lang.String)
cuisine (java.lang.String)
neighborhood (java.lang.String)
address (java.lang.String)
phone (java.lang.String)
description (java.lang.String)
rating (java.lang.Integer)

Note – The order in which you create these parameters becomes important when you

test the bean with the test application facility. Create them in the order given here.

Keep the two exceptions created by default, and make sure the method is added to

both Home and Local Home interfaces.

4. Click OK.

The IDE propagates a create method under the RestaurantHome interface,

another create method under the LocalRestaurantHome interface, and an

ejbCreate method under the Restaurant bean class (RestaurantBean). A

related ejbPostCreate method is also added to the bean class.

5. Expand the Restaurant(EJB) logical node and the Create Methods folder, and
double-click the create method.

The Source Editor is displayed with the cursor at placed on the ejbCreate method

of the bean.

Note – If you right-click the create method node and choose Help, you can get

online help information on create methods.
Chapter 3 Building the EJB Tier of the DiningGuide Application 37

6. Add the following code (the bold text only) to the body of the ejbCreate method
to initialize the fields of the bean instance:

Tip – After you enter code (either by typing or copying and pasting) into the Source

Editor, select the block of code and press Control-Shift F to reformat it properly.

When the Restaurant entity bean’s create method is called, it creates a new

record in the database, based on the container-managed fields of this bean.

Creating the Customerreview Bean’s Create Method

Create the create method for the Customerreview entity bean as follows:

1. Right-click the Customerreview(EJB) logical node (the bean icon) and
choose Add Create Method.

2. Use the Add button to create three parameters, one for each column of the
CustomerReview table:

restaurantname (java.lang.String)
customername (java.lang.String)
review (java.lang.String)

public String ejbCreate(java.lang.String restaurantname,
java.lang.String cuisine, java.lang.String neighborhood,
java.lang.String address, java.lang.String phone,
java.lang.String description, java.lang.Integer rating) throws
javax.ejb.CreateException {

if (restaurantname == null) {
// Make the following two lines a single line in the Source Editor

throw new javax.ejb.CreateException("The restaurant name
is required.");

}
setRestaurantname(restaurantname);
setCuisine(cuisine);
setNeighborhood(neighborhood);
setAddress(address);
setPhone(phone);
setDescription(description);
setRating(rating);

return null;
}

38 Forte for Java 4, Enterprise Edition Tutorial • June 2002

Note – As in Step 3, create these parameters in the order given.

Keep the two exceptions created by default, and make sure the method is added to

both Home and Local Home interfaces.

3. Click OK.

4. Open the Customerreview(EJB) logical node and the Create Methods folder,
and double-click the create method.

The Source Editor opens with the cursor at the ejbCreate method of the bean.

5. Add the following (bold) code to the body of the ejbCreate method to initialize
the fields of the bean instance:

When the ejbCreate method is called, it creates a new record in the database,

based on the container-managed fields of this bean.

6. Choose File → Save All to save your work.

Now, create finder methods on both entity beans that will locate all or selected

instances of each bean in the context.

public CustomerreviewKey ejbCreate(java.lang.String
restaurantname, java.lang.String customername, java.lang.String
review) throws javax.ejb.CreateException {

if ((restaurantname == null) || (customername == null)) {
// Make the following two lines a single line in the Source Editor

throw new javax.ejb.CreateException("Both the restaurant
name and customer name are required.");

}
setRestaurantname(restaurantname);
setCustomername(customername);
setReview(review);

return null;
}

Chapter 3 Building the EJB Tier of the DiningGuide Application 39

Creating Finder Methods on Entity Beans

Create a findAll method on the Restaurant bean to locate all restaurant data.

Also create a findByRestaurantName on the Customerreview bean to locate

review data for a given restaurant.

Every finder method, except findByPrimaryKey , must be associated with a query
element in the deployment descriptor. When you create the finder methods for these

two entity beans, specify SQL statements using a database-independent language

specified in the EJB 2.0 specification, namely EJB QL. At deployment time, the RI

plugin translates the EJB QL into the SQL of the target database.

Creating the Restaurant Bean’s findAll Method

To create the Restaurant bean’s findAll method:

1. Right-click the Restaurant(EJB) logical node and choose Add Finder Method.

The Add New Finder Method dialog box is displayed.

2. Type findAll in the Name field.

3. Select java.util.Collection for the Return type.

4. Accept the two default exceptions.

5. Define the EJB QL statements, as follows:

6. Make sure the method is added to both Home and Local Home interfaces.

7. Click OK.

The new findAll method is created in the Local and Local Homeinterfaces of the

Restaurant bean.

Note – If you right-click the Finder Methods node and choose Help, you can get

online help information on finder methods.

EJB QL Statement Text

Select Object(o)

From Restaurant o
40 Forte for Java 4, Enterprise Edition Tutorial • June 2002

Creating the Customerreview Bean’s
findByRestaurantName Method

To create the Customerreview bean’s findByRestaurantName method:

1. Right-click the Customerreview(EJB) logical node and choose Add Finder
Method.

The Add New Finder Method dialog box is displayed.

2. Type findByRestaurantName in the Name field.

3. Select java.util.Collection for the Return type.

4. Click the parameter’s Add button.

The Enter New Parameter dialog box is displayed.

5. Type restaurantname for the parameter name.

6. Select java.lang.String for the parameter type.

7. Click OK.

8. Accept the two default exceptions.

9. Define the EJB QL statements, as follows:

(Which numeral you use depends on the position of the parameter in the finder

method. In this case there’s only one parameter, so the numeral is “1”).

10. Make sure the method is added to both Home and Local Home interfaces.

11. Click OK.

The new findByRestaurantName method is created in the Local and Local Home

interfaces of the Customerreview bean.

12. Choose File → Save All to save your work.

EJB QL Statement Text

Select Object(o)

From Customerreview o

Where o.restaurantname = ?1
Chapter 3 Building the EJB Tier of the DiningGuide Application 41

Creating Business Methods for Testing Purposes

Create a business method for each entity bean that returns a value of one of its

parameters. The business method enables you to test the beans later. For

Restaurant , create a getRating method; for Customerreview , create a

getReview method.

Creating the Restaurant Bean’s getRating Method

To create the getRating business method for the Restaurant bean:

1. Expand the Restaurant(EJB) logical node, and then expand its Business
Methods node.

There are no business methods yet for this entity bean.

2. Expand the Restaurant bean’s class (RestaurantBean), and then expand its
Methods node.

Every field on the bean has accessor methods, including a getRating method.

These methods are used by the container for synchronization with the data source.

To use any of these methods in development, you have to create them as business

methods.

3. Right-click the Restaurant(EJB) logical node and choose Add Business
Method.

The Add New Business Method dialog box is displayed.

4. Type getRating in the Name field.

5. Type java.lang.Integer in the Return Type field.

Accept the default exception (RemoteException), and the designation that the

method will be created in both Local and Local Home interfaces.

6. Click OK.

7. Expand the Restaurant(EJB) logical node, and expand the Business Methods
folder.

The getRating method is now accessible as a business method. When the

getRating method is used, it returns the value in the rating column of a selected

restaurant record.

8. Right-click the Restaurant(EJB) logical node and choose Validate EJB from the
contextual menu.

The Restaurant entity bean should compile without errors. Now, create a similar

method for the Customerreview bean.
42 Forte for Java 4, Enterprise Edition Tutorial • June 2002

Creating the Customerreview Bean’s getReview Method

To create the getReview business method for the Customerreview bean:

1. Right-click the Customerreview(EJB) logical node and choose Add Business
Method.

The Add New Business Method dialog box is displayed.

2. Type getReview in the Name field.

3. Select java.lang.String in the Return Type field.

Accept the default exception (RemoteException), and the designation that the

method will be created in both Local and Local Home interfaces.

4. Click OK.

The getReview method is now accessible as a business method. When the

getReview method is called, it returns the value in the review column of a selected

restaurant record.

5. Right-click the Customerreview(EJB) logical node and choose Validate EJB
from the contextual menu.

The Customerreview entity bean should compile without errors.

6. Check that the icons in the Explorer no longer indicate that the beans are
uncompiled.
Chapter 3 Building the EJB Tier of the DiningGuide Application 43

Creating Detail Classes to View Entity
Bean Data

As discussed in “The Detail Classes” on page 29, this tutorial uses detail classes as a

mechanism for holding row data for viewing and reducing method calls to the entity

beans. These classes must have the same fields as the corresponding entity beans,

access methods for each field, and a constructor that sets each field.

Note – The source code for the completed detail classes is provided in Appendix A.

Creating the Detail Classes

First, create a RestaurantDetail class and a CustomerreviewDetail class:

1. In the Explorer, right-click the Data package and choose New → Beans → Java
Bean.

2. Name the new bean RestaurantDetail and click Finish.

The new bean is displayed in the Explorer.

3. Repeat Step 1 and Step 2 to create the CustomerreviewDetail bean.

Creating the Detail Class Properties and Their

Accessor Methods

Now, add the same bean properties to the classes as those in the corresponding

entity beans’ CMP fields. (If you look in the Bean Patterns nodes of an entity

bean’s bean class, you will see that the CMP fields are stored as bean properties.)

While adding the fields, you can automatically create accessor methods for each

field.

To create the detail class properties and methods:

1. Expand the RestaurantDetail node and the class RestaurantDetail node.

2. Right-click the Bean Patterns node and choose Add → Property.

The New Property Pattern dialog box is displayed.
44 Forte for Java 4, Enterprise Edition Tutorial • June 2002

3. Type restaurantname in the Name field.

4. Select String for the Type.

5. Select the Generate Field option.

6. Select the Generate Return Statement option.

7. Select the Generate Set Statement option.

8. Click OK.

9. Repeat Step 2 through Step 8 to create the following additional properties:

cuisine (String)
neighborhood (String)
address (String)
phone (String)
description (String)
rating (Integer)

10. Expand the RestaurantDetail bean’s Methods node.

Accessor methods have been generated for each field.

11. Expand the CustomerreviewDetail node and the class
CustomerreviewDetail node.

12. Repeat Step 2 through Step 8 to create the following properties in the Bean
Properties node:

restaurantname (String)
customername (String)
review (String)

Creating the Detail Class Constructors

To create constructors for the detail classes that instantiate the class fields:

1. Expand the RestaurantDetail bean, right-click the class RestaurantDetail
node, and choose Add → Constructor.

The Edit New Constructor dialog box is displayed.

2. Add the following method parameters and click OK:

java.lang.String restaurantname
java.lang.String cuisine
java.lang.String neighborhood
java.lang.String address
Chapter 3 Building the EJB Tier of the DiningGuide Application 45

java.lang.String phone
java.lang.String description
java.lang.Integer rating

(You must type in java.lang.Integer ; you can not select it from the list of types.)

3. Add the following bold code to the body of this RestaurantDetail constructor
to initialize the fields:

Tip – Remember, you can reformat code you paste or type into the Source Editor by

selecting the code block and pressing Control-Shift F.

4. Similarly, add a constructor to the CustomerreviewDetail class with the
following parameters:

java.lang.String restaurantname
java.lang.String customername
java.lang.String review

5. Add the following bold code to the body of this CustomerreviewDetail
constructor to initialize the fields:

public RestaurantDetail(java.lang.String restaurantname,
java.lang.String cuisine, java.lang.String neighborhood,
java.lang.String address, java.lang.String phone,
java.lang.String description, java.lang.Integer rating){

System.out.println("Creating new RestaurantDetail");
setRestaurantname(restaurantname);
setCuisine(cuisine);
setNeighborhood(neighborhood);
setAddress(address);
setPhone(phone);
setDescription(description);
setRating(rating);

}

public RestaurantDetail(java.lang.String restaurantname,
java.lang.String customername, java.lang.String review){

System.out.println("Creating new CustomerreviewDetail");
setRestaurantname(restaurantname);
setCustomername(customername);
setReview(review);

}

46 Forte for Java 4, Enterprise Edition Tutorial • June 2002

6. Right-click the Data package and choose Compile All.

The package should compile without errors.

Now, create get methods on the entity beans to retrieve instances of the detail

classes.

Creating Business Methods on the Entity Beans to

Fetch the Detail Classes

Create a method on each entity bean that returns an instance of its corresponding

detail class.

To create the getter methods:

1. In the Explorer, right-click the Restaurant (EJB) logical node and choose Add
Business Method.

The Add New Business Method dialog box is displayed.

2. Type getRestaurantDetail in the Name field.

3. For the return type, use the Browse button to select the RestaurantDetail class.

Data.RestaurantDetail is displayed in the Return Type field.

4. Click OK to create the method.

5. Double-click the method to access it in the Source Editor and add the following
bold code:

6. In the Explorer, right-click the Customerreview (EJB) logical node and choose
Add Business Method.

7. Type getCustomerreviewDetail in the Name field.

8. For the return type, use the Browse button to select the CustomerreviewDetail
class.

9. Click OK to create the method.

public Data.RestaurantDetail getRestaurantDetail() {
return (new RestaurantDetail(getRestaurantname(),

getCuisine(),getNeighborhood(), getAddress(), getPhone(),
getDescription(), getRating()));
}

Chapter 3 Building the EJB Tier of the DiningGuide Application 47

10. Open the method in the Source Editor and add the following bold code:

11. Right-click the Data package and choose Compile All.

The entire package should compile without errors.

You have finished creating the entity beans of the tutorial application and their

detail class helpers. Your next task is to test the beans.

Testing the Entity Beans

The Forte for Java 4 IDE includes a mechanism for testing enterprise beans without

having to create your own client. This feature uses the J2EE RI as the application

server. The enterprise bean is deployed as part of an application that uses JavaServer

Pages technology. The test client is displayed in a web browser. Using this page, you

can create instances of the bean and exercise the bean’s create, finder, and business

methods.

Use this test mechanism to exercise the Restaurant bean’s create and

getRating methods.

Creating a Test Client for an Entity Bean

When you create a test client, the IDE generates an EJB module, a J2EE application

module, and many supporting elements.

To create a test client for the Restaurant entity bean:

1. Right-click the Restaurant(EJB) logical node and choose Create New EJB Test
Application.

The EJB Test Application wizard is displayed.

public Data.CustomerreviewDetail getCustomerreviewDetail() {
return (new CustomerreviewDetail(getRestaurantname(),

getCustomername(), getReview()));
}

48 Forte for Java 4, Enterprise Edition Tutorial • June 2002

2. Accept all default values.

The wizard’s window looks like this:

3. Click OK.

A progress monitor appears briefly and then goes away when the process is

complete. Another window is displayed informing you that the web module that

was created is also visible in the Project tab. It should go away automatically, also. If

not, click OK to close the window.

4. View the resulting test objects in the Explorer.

The IDE has created an EJB module named Restaurant_EJBModule , a web

module named Restaurant_WebModule (which is mounted separately), and a

J2EE application named Restaurant_TestApp . The web module contains a

number of JSP pages that support the test client. The J2EE application includes

references to the EJB module and to the web module.
Chapter 3 Building the EJB Tier of the DiningGuide Application 49

The J2EE application created by the IDE contains references to the web module and

the EJB module. You can see these objects by expanding the Restaurant_TestApp :

Web module

JSP pages

EJB module
J2EE application
Web module (mounted)
50 Forte for Java 4, Enterprise Edition Tutorial • June 2002

Providing the RI Plugin With PointBase

Information

In order for the test client to find the database and log onto it, you must add

PointBase information to the Reference Implementation properties of the EJB module.

To add the required information:

1. Select the EJB module (Restaurant_EJBModule) in the Explorer and display its
property sheet.

If the Properties Window is not already displayed, choose View → Properties.

2. Select the J2EE RI tab of the Properties window.

Note – If there is no J2EE RI tab on the Properties window, there is no instance of

the Reference Implementation in the Server Registry. See “Verifying the Correct

Default Application Server and Web Server” on page 7 for correcting this problem.

3. Type jdbc/Pointbase in the Data Source JNDI Name field.

Note – Make sure to spell “Pointbase” with an initial capital only. This is the way it

is specified in the J2EE RI default properties file, and must be exactly the same for

this property.

4. Type PBPUBLIC in the Data Source Password field.

This will be displayed as asterisks.

5. Type PBPUBLIC in the Data Source UserName field.

6. Select the value field for the SQL Deployment Settings to display the ellipsis (…)
button.

7. Click the ellipsis button to display the SQL Deployment Settings property editor.

The Restaurant bean is displayed in the left column.

8. Select the Restaurant bean and deselect the two options that appear in the right
column.

The two options are:

■ Create Table On Deploy

■ Delete Table On Undeploy

In “Creating the Tutorial Database Tables” on page 8, you used the database script to

create the Restaurant and Customerreview tables. You do not need to recreate them

every time you deploy the application.
Chapter 3 Building the EJB Tier of the DiningGuide Application 51

9. Expand the Restaurant node.

The SQL Deployment Settings Property Editor looks like this:

10. To view the SQL generated for any method, select the method.

The SQL appropriate for your selected database is displayed. If you examine the

SQL generated for the findAll method, you can see its relation to the EJB QL you

specified for this method.

11. Click OK to accept the changes and close the editor.

12. Change the value of the Use Delimited Identifiers in SQL property to False.

This action prevents the RI plugin from generating SQL that creates table names and

column names surrounded by quotation marks. (You only need the quotation marks

if your table and column names use restricted words.)
52 Forte for Java 4, Enterprise Edition Tutorial • June 2002

Deploying the Test Application

Note – Make sure the PointBase Server is running (see Step 1 under “Creating the

Tutorial Database Tables” on page 8) before you deploy a J2EE application that

accesses the database. In addition, make sure the J2EE RI server is not running

outside the IDE. The deployment process automatically starts the J2EE RI server (or

restarts it if it is already running).

To deploy the Restaurant test application:

1. Right-click the Restaurant_TestApp J2EE application node and choose Deploy
from the contextual menu.

A Progress Monitor window shows the J2EE RI server starting up, followed by the

deployment process.

2. Verify that the application is deployed.

When “Deployment of Restaurant_TestApp is complete” appears in the output

window, the application is deployed.

Tip – If your deployment failed, check whether the J2EE RI is the default application

server. See “Verifying the Correct Default Application Server and Web Server” on

page 7 for more information on how to set it correctly, then redeploy.

Using the Test Client to Test the Entity Bean

Point your web browser to the test page to start the application. On the test client’s

web page that is displayed, use the create method of the Restaurant bean’s

home interface to create an instance of the bean. Then test a business method (in this

case, getRating) on that instance.

To test the Restaurant bean:

1. From your operating system, launch a web browser and point it to the following
URL:

http://localhost:8000/Restaurant_TestApp

Note – Port 8000 is the default port J2EE RI runs on. If you need to verify that this

is the correct port, pointing your browser to http://localhost:8000 should

display the default page of the J2EE RI.
Chapter 3 Building the EJB Tier of the DiningGuide Application 53

Your browser displays the test client.

2. Create an instance of the Restaurant bean by invoking the create method.

The create method is under the heading “Invoke Methods on

Data.RestaurantHome.” There are seven fields under it. The fields are not named,

but you can deduce what they are by their order, which is the same order you

created them in (see Step 3 under “Creating Create Methods for CMP Entity Beans”

on page 37).

Note – Double-click the Restaurant.create method to display it in the Source

Editor; the order of the fields is shown in the method’s definition.

Tip – If you want the parameters to appear in a different order, right-click the

Restaurant.create method node in the Explorer window and choose Customize.

In the Customizer dialog box, rearrange the parameters by selecting and clicking the

Up and Down buttons. Then redeploy the test application by right-clicking its node

in the Explorer and choosing Deploy.

Type any data you like into the fields, for example (your field order may be

different):

List of objects created
during the test session.

Area where results of
last method invocation
are shown.

Area where you can
enter parameters and
invoke methods.

List of instances being
tested, beginning with
the home interface of
the bean being tested.
54 Forte for Java 4, Enterprise Edition Tutorial • June 2002

3. Click the Invoke button next to the create method.

The deployed test application adds the records you created to the test database. The

new Restaurant instance is listed by its restaurantname value in the upper left,

and new data objects are listed in the upper right, as shown.
Chapter 3 Building the EJB Tier of the DiningGuide Application 55

The results are shown in the Results area.

4. Test the findAll method of the Restaurant bean by clicking the Invoke button
next to it.

The results area should look like this:

Notice that three items were returned. This demonstrates that the new database

record you created in Step 3 was added to the two you created in Chapter 1.

5. Test the findByPrimaryKey method by typing in Bay Fox and clicking the
Invoke button next to the method.

The results area shows that the Bay Fox record was returned.

Now, test the entity bean’s business methods.

6. Select the instance for Joe’s House of Fish listed under Data.RestaurantHome in
the instances list (upper left).

The getRating method is now listed under the Invoke Methods area.
56 Forte for Java 4, Enterprise Edition Tutorial • June 2002

7. Click the Invoke button next to the getRating method.

The results of this action are listed in the Results area and should look like this:

This demonstrates that you have created a new record in the database and used the

getRating method to retrieve the value of one of its fields.

Continue testing by selecting created objects and invoking their methods. For

example, if you select one of the Data.RestaurantDetail objects, you can invoke

its getter methods to view its data, or its setter methods to write new data to the

database.

8. When you are finished testing, stop the test client by pointing your web browser
at another URL or by exiting the browser.

You will use the Restaurant_TestApp in Chapter 4. You will also need a

Customerreview_TestApp in Chapter 4.

9. Create a test client for the Customerreview entity bean and test it redoing all the
steps appropriately for the Customerreview bean, starting with “Creating a Test
Client for an Entity Bean” on page 48.

The test URL is: http://localhost:8000/Customerreview_TestApp

Checking the Additions to the Database

To verify that the Restaurant_TestApp application inserted data in the database:

1. Start the PointBase console.

Refer to Step 2 under “Creating the Tutorial Database Tables” on page 8.

2. Copy the following SQL into the PointBase console:

select * from Restaurant :
Chapter 3 Building the EJB Tier of the DiningGuide Application 57

3. Choose SQL → Execute to execute the statement.

If you entered the values in Step 2 under “Using the Test Client to Test the Entity

Bean” on page 53, the results should look like this:

You are now ready to create the session bean.

Note – You do not need to stop the J2EE RI process. Whenever you redeploy, the

IDE undeploys the application and then restarts the J2EE RI server. When you exit

the IDE, a dialog box is displayed for terminating the J2EE RI instance process.

However, you can manually terminate it at any time you wish by right-clicking the

RI Instance 1 node in the execution window and choosing Terminate Process.
58 Forte for Java 4, Enterprise Edition Tutorial • June 2002

Creating a Session Bean With the EJB
Builder

Create a stateless session bean to manage the conversation between the client (the

web service you will create in Chapter 4) and the entity beans.

Note – The source code for the completed session bean is provided in Appendix A.

In version 2.0 of the EJB architecture, session beans can have local interfaces, remote

interfaces, or both. In this tutorial, the session beans’ methods will be called by the

test application (which is local to the session bean), the web services (also local), and

the client (remote). Therefore, create a session bean with both local and remote

interfaces.

1. In the Forte for Java 4 Explorer, right-click the Data package and choose New →
J2EE → Session EJB.

The New wizard is displayed, displaying the Session Bean Name and Properties

pane.

2. Type DiningGuideManager in the Name field.

3. Select Stateless for the State option.

4. Select Container Managed for the Transaction Type option.

5. Select Both Remote and Local Interfaces for the Component Interfaces
option.

6. Click Next.

The Session Bean Class Files pane of the wizard is displayed, listing all the

components that will be created for this session bean.

Notice that the names of the all the components are based on DiningGuideManager.
Chapter 3 Building the EJB Tier of the DiningGuide Application 59

7. Click Finish.

The new DiningGuideManager session bean is displayed in the Explorer.

Now create the session bean’s methods.

Coding a Session Bean’s Create Method

The create method was created when you created the DiningGuideManager
session bean. You will now modify it.

Create methods of stateless session beans have no arguments, because session beans

do not maintain an ongoing state that needs to be initialized. The create method of

the DiningGuideManager session bean must first create an initial context, which it

then uses to get the required remote references.

1. Double-click the DiningGuideManager ’s create method to display it in the
Source Editor.

Use the logical node (DiningGuideManager(EJB)) to locate the method.

DiningGuideManager session bean
60 Forte for Java 4, Enterprise Edition Tutorial • June 2002

2. Begin coding the method with a JNDI lookup for a remote reference to the
RestaurantHome interface.

Note – Remember, you can reformat the code you enter in the Source Editor by

selecting it and pressing Control-Shift F.

3. Under the preceding code, add a similar JNDI lookup for the
CustomerreviewHome interface.

public void ejbCreate(){
// Make the following two lines one line in the Source Editor

System.out.println("Entering
DiningGuideManagerEJB.ejbCreate()");

Context c = null;
Object result = null;

if (this.myRestaurantHome == null) {
try {

c = new InitialContext();
result = c.lookup("Restaurant");
myRestaurantHome =

(RestaurantHome)javax.rmi.PortableRemoteObject.narrow (result,
RestaurantHome.class);

}
catch (Exception e) {System.out.println("Error: "+ e); }

}

Context crc = null;
Object crresult = null;

if (this.myCustomerreviewHome == null) {
try {

crc = new InitialContext();
result = crc.lookup("Customerreview");
myCustomerreviewHome =

(CustomerreviewHome)javax.rmi.PortableRemoteObject.narrow(result
, CustomerreviewHome.class);

}
catch (Exception e) {System.out.println("Error: "+ e); }

}

Chapter 3 Building the EJB Tier of the DiningGuide Application 61

4. Now add an import statement for the javax.naming package.

Add the import statement at the top of the file. You must import javax.naming
because it contains the lookup method you just used.

5. Declare the myRestaurantHome and myCustomerreviewHome fields.

Add these declarations to the definition of the DiningGuideManagerEJB session

bean after the import statements.

6. Choose File → Save All to save your work.

Next, create the DiningGuideManager’s business methods.

Creating Business Methods to Get the Detail Data

The DiningGuideManager bean requires a method that retrieves all restaurant data

when it receives a request from the client to see the list of restaurants. It also requires

a method to retrieve review data for a specific restaurant when the client requests a

list of customer reviews. Create the getAllRestaurants and

getCustomerreviewsByRestaurant methods to satisfy these requirements.

Creating the getAllRestaurants Method

To create the getAllRestaurants business method:

1. Right-click the DiningGuideManager logical node and choose Add Business
Method.

The Add New Business Method dialog box is displayed.

2. Type getAllRestaurants in the Name field.

3. Type java.util.Vector in the Return Type field.

import javax.naming.*;

public class DiningGuideManagerBean implements
javax.ejb.SessionBean {

private javax.ejb.SessionContext Context;
private RestaurantHome myRestaurantHome;
private CustomerreviewHome myCustomerreviewHome;
62 Forte for Java 4, Enterprise Edition Tutorial • June 2002

4. Click OK.

The method shell is created in the DiningGuideManager session bean’s business

methods.

5. Open the method in the Source Editor and add the following (bold only) code:

This code gets an instance of RestaurantDetail for each remote reference of the

Restaurant bean in the context, adds it to a vector called restaurantList , and

returns this vector.

Now, create a similar method to get a list of customer reviews.

public java.util.Vector getAllRestaurants() {
// Make the following two lines a single line in the Source Editor

System.out.println("Entering
DiningGuideManagerEJB.getAllRestaurants()");

java.util.Vector restaurantList = new java.util.Vector();
try {

java.util.Collection rl = myRestaurantHome.findAll();
if (rl == null) { restaurantList = null; }
else {

RestaurantDetail rd;
java.util.Iterator rli = rl.iterator();
while (rli.hasNext()) {

rd =
((Restaurant)rli.next()).getRestaurantDetail();

System.out.println(rd.getRestaurantname());
System.out.println(rd.getRating());
restaurantList.addElement(rd);

}
}

}
catch (Exception e) {

// Make the following two lines a single line in the Source Editor
System.out.println("Error in

DiningGuideManagerEJB.getAllRestaurants(): " + e);
}

// Make the following two lines a single line in the Source Editor
System.out.println("Leaving

DiningGuideManagerEJB.getAllRestaurants()");
return restaurantList;

}

Chapter 3 Building the EJB Tier of the DiningGuide Application 63

Creating the getCustomerreviewsByRestaurant Method

To create the getCustomerreviewsByRestaurant method:

1. Right-click the DiningGuideManager logical node and choose Add Business
Method.

The Add New Business Method dialog box is displayed.

2. Type getCustomerreviewsByRestaurant in the Name field.

3. Type java.util.Vector in the Return Type field.

4. Click the Add button to add a parameter.

The Add New Parameter dialog box is displayed.

5. Type restaurantname in the Field Name field.

6. Type java.lang.String in the Type field.

7. Click OK to close the dialog box and create the method parameter.

8. Click OK again create the business method.

The method is created in the DiningGuideManager session bean.
64 Forte for Java 4, Enterprise Edition Tutorial • June 2002

9. Find the method in the Source Editor and add the following bold code:

Similar to the getAllRestaurants code, this method retrieves an instance of

CustomerreviewDetail for each remote reference of the Customerreview bean

in the context, adds it to a vector called reviewList and returns this vector.

10. Choose File → Save All to save your work.

public java.util.Vector
getCustomerreviewsByRestaurant(java.lang.String

restaurantname) {
// Make the following two lines a single line in the Source Editor

System.out.println("Entering
DiningGuideManagerEJB.getCustomerreviewsByRestaurant()");

java.util.Vector reviewList = new java.util.Vector();
try {

java.util.Collection rl =
myCustomerreviewHome.findByRestaurantName(restaurantname);

if (rl == null) { reviewList = null; }
else {

CustomerreviewDetail crd;
java.util.Iterator rli = rl.iterator();
while (rli.hasNext()) {

crd =
((Customerreview)rli.next()).getCustomerreviewDetail();

System.out.println(crd.getRestaurantname());
System.out.println(crd.getCustomername());
System.out.println(crd.getReview());
reviewList.addElement(crd);

}
}

}
catch (Exception e) {

// Make the following two lines a single line in the Source Editor
System.out.println("Error in

DiningGuideManagerEJB.getCustomerreviewsByRestaurant(): " + e);
}

// Make the following two lines a single line in the Source Editor
System.out.println("Leaving

DiningGuideManagerEJB.getCustomerreviewsByRestaurant()");
return reviewList;

}

Chapter 3 Building the EJB Tier of the DiningGuide Application 65

Creating a Business Method to Create a Customer

Review Record

Now create a business method that calls the Customerreview entity bean’s create

method to create a new record in the database.

To create the createCustomerreview method:

1. Right-click the DiningGuideManager logical node and choose Add Business
Method.

The Add New Business Method dialog box is displayed.

2. Type createCustomerreview in the Name field.

3. Type void in the Return Type field.

4. Click the Add button to add a parameter.

The Add New Parameter dialog box is displayed.

5. Type restaurantname in the Field Name field.

6. Type java.lang.String in the Type field.

7. Click OK to close the dialog box and create the method parameter.

8. Repeat Step 4 through Step 7 twice to create the following two parameters:

java.lang.String customername
java.lang.String review

9. Click OK again create the business method.

The method is created in the DiningGuideManager session bean.
66 Forte for Java 4, Enterprise Edition Tutorial • June 2002

10. Find the method in the Source Editor and add the following bold code:

11. Choose File → Save All to save your work.

Creating Business Methods That Return Detail

Class Types

The web service you will create in Chapter 4 is a SOAP RPC web service. SOAP

(Simple Object Access Protocol) is an abstract messaging technique that allows web

services to communicate with one another using HTTP and XML. The SOAP

runtime must know of all the Java types employed by any methods that are called

by the web service in order to map them properly into XML. Because the tutorial’s

web service will call session bean methods, it needs to know every type used by

those methods.

One type the SOAP runtime can not have knowledge of is the types of objects that

make up collections. The methods that you just created (getAllRestaurants and

getCustomerreviewsByRestaurant) all return collections of the detail classes.

You must provide knowledge of these classes to the SOAP runtime by creating, for

each detail class, a method that returns the class. The methods you will create are the

getRestaurantDetail and getCustomerreviewDetail methods.

public void createCustomerreview(java.lang.String restaurantname,
java.lang.String customername, java.lang.String review) {
// Make the following two lines a single line in the Source Editor

System.out.println("Entering
DiningGuideManagerEJB.createCustomerreview()");

try {
Customerreview customerrev =

myCustomerreviewHome.create(restaurantname, customername,
review);

} catch (Exception e) {
// Make the following two lines a single line in the Source Editor

System.out.println("Error in
DiningGuideManagerEJB.createCustomerreview(): " + e);

}
// Make the following two lines a single line in the Source Editor

System.out.println("Leaving
DiningGuideManagerEJB.createCustomerreview()");
}

Chapter 3 Building the EJB Tier of the DiningGuide Application 67

You created methods with the same names on the entity beans (see “Creating

Business Methods on the Entity Beans to Fetch the Detail Classes” on page 47), but

the methods you create now are empty, their purpose being simply to supply the

required return type.

For more information on Forte for Java 4 web services and the SOAP runtime, see

Building Web Services in the Forte for Java Programming series.

Creating the getRestaurantDetail Method

To create the getRestaurantDetail method:

1. Right-click the DiningGuideManager logical node and choose Add Business
Method.

The Add New Business Method dialog box is displayed.

2. Type getRestaurantDetail in the Name field.

3. For the return type, use the Browse button to select the RestaurantDetail class.

Data.RestaurantDetail is displayed in the Return Type field.

4. Click OK to create the business method and close the dialog box.

The method is created in the DiningGuideManager session bean.

5. Find the method in the Source Editor and add the following bold code:

Creating the getCustomerreviewDetail Method

To create the getCustomerreviewDetail method:

1. Right-click the DiningGuideManager logical node and choose Add Business
Method.

The Add New Business Method dialog box is displayed.

2. Type getCustomerreviewDetail in the Name field.

3. For the return type, use the Browse button to select the CustomerreviewDetail
class.

Data.CustomerreviewDetail is displayed in the Return Type field.

public Data.RestaurantDetail getRestaurantDetail() {
return null;

}

68 Forte for Java 4, Enterprise Edition Tutorial • June 2002

4. Click OK to create the business method and close the dialog box.

The method is created in the DiningGuideManager session bean.

5. Find the method in the Source Editor and add the following bold code:

6. Right-click DiningGuideManager(EJB) and choose Validate EJB.

The DiningGuideManager session bean should validate without errors.

Adding EJB References

When you deploy a session bean, the bean’s properties must contain references to

any entity beans methods called by the session bean. Add them to the session bean

now; you can not add them after the bean has been assembled into an EJB module.

1. In the Explorer, select the DiningGuideManager(EJB) logical node.

2. Display the bean’s property sheet.

If the Properties window is not already visible, choose View → Properties.

3. Select the References tab of the property window.

4. Click the EJB References field and then click the ellipsis (…) button.

The EJB References property editor is displayed.

5. Click the Add button.

The Add EJB Reference property editor is displayed.

6. Type ejb/Restaurant in the Reference Name field.

7. For the Referenced EJB Name field, click the Browse button.

The Select an EJB browser is displayed.

8. Select the Restaurant (EJB) bean under the DiningGuide/Data node and
click OK.

Notice that the Home and Remote interface fields are automatically filled.

public Data.CustomerreviewDetail getCustomerreviewDetail() {
return null;

}

Chapter 3 Building the EJB Tier of the DiningGuide Application 69

9. Set the Type field to Entity .

The Add EJB Reference property editor looks like this:

10. Select the J2EE RI tab.

11. Type jdbc/Pointbase in the JNDI Name field and click OK.

Now add a reference to the Customerreview entity bean.

12. Repeat Step 5 through Step 11 for the Customerreview entity bean.

The EJB References dialog box looks like this:

13. Click OK to close the Property Editor window.

You have now completed the EJB Tier of the tutorial application and are ready to test

it. As when you tested the entity beans, the IDE’s test application facility creates a

web tier and JSP pages that can be read by a client in a browser.
70 Forte for Java 4, Enterprise Edition Tutorial • June 2002

Testing the Session Bean

Use the IDE’s test application facility to test the DiningGuideManager session

bean. This will test the whole EJB tier, because the session bean’s methods provide

access to methods on all of the tier’s components.

Creating a Test Client for a Session Bean

Create a test application from the DiningGuideManager bean. Then add the two

entity beans to the EJB module.

To create a test client for the session bean:

1. Right-click the DiningGuideManager logical node and choose Create New EJB
Test Application.

The EJB Test Application wizard is displayed.

2. Accept all default values and click OK.

A progress monitor appears briefly and then goes away when the process is

complete. Another window is displayed informing you that the web module that

was created is also visible in the Project tab. It should go away automatically, also. If

not, click OK to close the window.

3. View the resulting test objects in the Explorer.

The IDE has created the following objects:

■ An EJB module (DiningGuideManager_EJBModule)

■ A web module (DiningGuideManager_WebModule)

■ A J2EE application (DiningGuideManager_TestApp)

The EJB module and web module appear as subnodes under the Data package and

also as modules contained in the J2EE application. The web module has also been

mounted separately.

The EJB module contains only the DiningGuideManager bean, so you must add

the two entity beans to it.

4. Right-click the DiningGuideManager_EJBModule and choose Add EJB.

The Add EJB to EJB Module browser is displayed.

5. Expand the DiningGuide filesystem and the Data package.

6. Using Control-Click, select both the Restaurant and Customerreview logical
beans.
Chapter 3 Building the EJB Tier of the DiningGuide Application 71

7. Click OK.

The DiningGuideManager_EJBModule should look like this:

8. Choose File → Save All.

Providing the RI Plugin With PointBase

Information

You must add PointBase information to the Reference Implementation properties of

the EJB module. You performed this task with the entity bean test client in

“Providing the RI Plugin With PointBase Information” on page 51.

To add the required information:

1. Select the EJB module (DiningGuideManager_EJBModule) in the Explorer and
display its property sheet.

If the Properties Window is not already displayed, choose View → Properties.

2. Select the J2EE RI tab of the Properties window.

3. Type jdbc/Pointbase in the Data Source JNDI Name field.

Note – Make sure to spell “Pointbase” with an initial capital only.

4. Type PBPUBLIC in the Data Source Password field.

This will be displayed as asterisks.

5. Type PBPUBLIC in the Data Source UserName field.

6. Select the value field for the SQL Deployment Settings property to display the
ellipsis (…) button.

7. Click the ellipsis button to display the SQL Deployment Settings property editor.

The Customerreview and Restaurant beans are displayed in the left column.
72 Forte for Java 4, Enterprise Edition Tutorial • June 2002

8. Select the each bean and uncheck the two options that appear in the right column:

■ Create Table On Deploy

■ Delete Table On Undeploy

9. Click OK to accept the changes and close the editor.

10. Change the value of the Use Delimited Identifiers in SQL property to False.

11. Save your work with File → Save All.

Deploying the Test Application

Note – Make sure the PointBase Server is running (see Step 1 under “Creating the

Tutorial Database Tables” on page 8) before you deploy a J2EE application that

accesses the database. In addition, make sure the J2EE RI server is not running

outside the IDE. The deployment process automatically starts the J2EE RI server (or

restarts it if it is already running).

To deploy the Restaurant test application:

1. Right-click the DiningGuideManager_TestApp J2EE application node and
choose Deploy from the contextual menu.

A Progress Monitor window shows the J2EE RI server starting up, followed by the

deployment process.

2. Verify that the application is deployed.

When “Deployment of DiningGuideManager_TestApp is complete” appears in the

output window, the application is deployed.

Tip – If your deployment failed, check whether the J2EE RI is the default application

server. See “Verifying the Correct Default Application Server and Web Server” on

page 7 for more information on how to set it correctly, then redeploy.

Now, test the DiningGuideManager session bean.
Chapter 3 Building the EJB Tier of the DiningGuide Application 73

Using the Test Client to Test a Session Bean

On the test client’s web page, create an instance of the DiningGuideManager
session bean by exercising the create method; then test the business methods

(getRating) on that instance.

Point your web browser to the test application to start the application:

1. From your operating system, launch a web browser and point it to the following
URL:

http://localhost:8000/DiningGuideManager_TestApp

Your browser displays the test client, with DiningGuideManagerHome listed as the

only instance in the instance list (upper left).

2. Create an instance of the DiningGuideManager session bean by invoking the
DiningGuideManagerHome ’s create method.

The Data.DiningGuideManager[x] instance appears in the instance list. Now

you can test the bean’s getter methods.

3. Select the new Data.DiningGuideManager[x] instance.

The getAllRestaurants and getCustomerreviewsByRestaurant methods are

made available.

4. Type any data you like in the createCustomerreview fields.

For example:
74 Forte for Java 4, Enterprise Edition Tutorial • June 2002

5. Click the Invoke button next to the createCustomerreview method.

The deployed test application adds the record you created to the database. The new

parameter values are listed in the Stored Objects section (upper right), and the

results are shown in the Results area:

6. Click the Invoke button on the getAllRestaurants method.

If you created Joe’s House of Fish in the database (in “Using the Test Client to Test

the Entity Bean” on page 53), a vector of size 3 appears in the list of created objects

(upper right), and the results of the method invocation should look as shown (actual

numbers may be different). If you didn’t create this record, your results might be

different.

7. Click the Invoke button on the getCustomerreviewDetail method.

The result is shown in the Results section.

8. Type Joe’s House of Fish in the field for the
getCustomerreviewsByRestaurant method and click the Invoke button.

No CustomerreviewDetail records should be returned, because there are no

customer review comments in the database. Now try the French Lemon record.
Chapter 3 Building the EJB Tier of the DiningGuide Application 75

9. Type French Lemon in the same field and invoke the method.

Two CustomerreviewDetail records should be returned:

10. Click the Invoke button on the getCustomerreviewDetail method.

The result is shown in the Results section.

11. When you are finished testing, stop the test client by pointing your web browser
at another URL or by exiting the browser.

Note – You do not need to stop the J2EE RI process. Whenever you redeploy, the

IDE undeploys the application and then restarts the J2EE RI server. When you exit

the IDE, a dialog box is displayed for terminating the J2EE RI instance process.

However, you can manually terminate it at any time you wish by right-clicking the

RI Instance 1 node in the execution window and choosing Terminate Process.

Checking the Additions to the Database

To verify that the DiningGuideManager_TestApp application inserted data in the

database:

1. Start the PointBase console.

Refer to Step 2 under “Creating the Tutorial Database Tables” on page 8.

2. Copy the following SQL into the PointBase console:

select * from CustomerReview ;
76 Forte for Java 4, Enterprise Edition Tutorial • June 2002

3. Choose SQL → Execute to execute the statement.

If you entered the values in Step 4 under “Using the Test Client to Test a Session

Bean” on page 74, the results should look like this:

You are now ready to create the web service.

Comments on Creating a Client

Congratulations, you have successfully completed the EJB tier of the DiningGuide

application. You are ready to go on to Chapter 4, to use the Forte for Java 4 IDE’s

Web Services module to create web services for the application, and then on to

Chapter 5 to install the provided Swing classes for your client.

You may, however, wish to create your own web services and client, in which case,

the Forte for Java 4 test application can offer some guidelines.
Chapter 3 Building the EJB Tier of the DiningGuide Application 77

Web services that access a session bean like the DiningGuideManager bean must

include a servlet and JSP pages with lookup methods for obtaining the Home

interfaces and Home objects of the entity beans in the EJB tier. The web module

created by the test application facility offers examples of the required code.

Lookup method examples are found in the EjbInvoker class under the web

module. Specifically, look for this class under the

WEB-INF/Classes/com/sun/forte4j/j2ee/ejbtest/webtest directory.

For example, the following methods offer good example lookup code:

■ EjbInvoker.getHomeObject
■ EjbInvoker.getHomeInterface
■ EjbInvoker.resolveEjb

Lookup method examples
78 Forte for Java 4, Enterprise Edition Tutorial • June 2002

CHAPTER 4

Creating the DiningGuide
Application’s Web Service

This chapter describes how to use the Forte for Java 4 IDE to create web services for

the DiningGuide application.

This chapter covers the following topics:

■ “Overview of the Tutorial’s Web Service,” which follows

■ “Creating the Tutorial’s Web Services Tier” on page 81

■ “Testing the Web Service” on page 84

■ “Making Your Web Service Available to Other Developers” on page 93

For a complete discussion of Forte for Java 4 web service features, see Building Web
Services from the Forte for Java Programming series. This book is available from the

Forte for Java 4 portal’s Documentation page at

http://forte.sun.com/ffj/documentation/index.html . For information

on specific features, see the Forte for Java 4 online help.

Overview of the Tutorial’s Web Service

In this chapter, you will create the DiningGuide application’s web service. As part of

this procedure you will explicitly create a number of components and generate some

others.

You will explicitly create:

■ A logical web service, the DiningGuideWebService web service

■ A J2EE application, which references both the session bean’s EJB module and the

web service

You will generate:

■ Runtime classes, which are EJB components for implementing the web service

■ A test client

■ A test client proxy
79

http://forte.sun.com/ffj/documentation/index.html

The Web Service

For more complete information about web services and how to create and program

them, see Building Web Services. See also the Forte for Java 4 online help for specific

web service topics and procedures.

The web service you create in the IDE is a logical entity that represents the entire set

of objects in your web service, and enables you to program your web service. In this

tutorial, you develop your web service’s functionality by creating references in the

web service to the methods you want clients to be able to access. You also use the

IDE to generate supporting EJB components and any document files the web service

needs to reference, such as JSP pages and HTML files. Although the DiningGuide

application does not require them, for other web services you could add other types

of documents, including image files.

The Runtime Classes

When you have finished programming your web service, you generate its runtime

classes. You do not work directly on the runtime classes, but you will see them

generated in the package containing the logical web service.

The Client Proxy Pages

When you deploy your web service, a client proxy is generated, which includes

supporting client pages placed in the logical web service’s Documents directory.

You will use these client pages for testing the web service. You can also use them as

a starting point or a guide for developing a full-featured referenced method. These

client proxy paged include a JSP page for each reference method, a JSP page to

display errors for the web service, and a welcome HTML page to organize the

method JSP pages for presentation in a web browser.

The welcome page contains one HTML form for each of the JSP page generated for

the referenced methods. If a method requires parameters, the HTML form contains

the appropriate input fields. You test the methods by inputting data for each

parameter, if required, and pressing the method’s Invoke button. The following

actions then occur:

1. The JSP page passes the request to the SOAP client proxy.

2. The SOAP client proxy passes the request to the Apache SOAP runtime system on

the application server.

A SOAP request is an XML wrapper that contains a method call on the web

service and input data in a serialized form.
80 Forte for Java 4, Enterprise Edition Tutorial • June 2002

3. The Apache SOAP runtime system on the application server transforms the SOAP

requests into a method call on the appropriate method referenced by the

DiningGuide web service.

4. The method call is passed to the appropriate business method in the EJB tier.

5. The processed response is passed back up the chain to the SOAP client proxy.

6. The SOAP client proxy passes the response to the JSP page, which displays the

response on a web page.

Creating the Tutorial’s Web Services Tier

Create the tutorial’s web services tier with the following tasks:

■ “Creating the Web Service Module,” which follows

Use the IDE’s Web Service wizard to create the logical web service and specify the

methods you want to reference.

■ “Specifying the Web Service’s SOAP RPC URL” on page 83

The SOAP rpcrouter Servlet is the Apache SOAP runtime on the application

server. You inform the web service of its location by specifying its URL as a

property on the web service.

■ “Generating the Web Service’s Runtime Classes” on page 84

This task generates the supporting EJB components that are used for testing and

implementing the web service.

Creating the Web Service Module

Use the New Web Service wizard to create the logical web service. The wizard offers

a choice of architectures: multitier or web-centric. Multitier limits web services to

calling business methods only on components in an application server, whereas

web-centric method calls can be on components in either an application server or a

web server. The DiningGuide application’s web service calls methods on the EJB tier

components, so choose the multitier architecture.

The wizard also prompts you to select the methods the web service will call, so it

can build references to these methods. Select the five business methods of the EJB

tier’s session bean.
Chapter 4 Creating the DiningGuide Application’s Web Service 81

To create the tutorial’s web service module:

1. In the Explorer, right-click the mounted DiningGuide Filesystem and choose
New → Java Package.

The New Package dialog box is displayed.

2. Type WebService for the name and click Finish.

The new WebService package appears under the DiningGuide directory.

3. Right-click the WebService package and choose New → Web Services → Web
Service.

The New wizard displays the Web Service pane.

4. Type DiningGuideWebService in the Name field, make sure the Multitier
option is selected for the Architecture type, and click Next.

The Methods pane of the New wizard is displayed.

5. Expand the Data, DiningGuide , DiningGuideManager(EJB) , and Business
Methods nodes.

6. Use Control-Click to select all the DiningGuideManager ’s business methods:

The Methods pane looks like this:
82 Forte for Java 4, Enterprise Edition Tutorial • June 2002

7. Click Finish.

The new DiningGuideWebService web service (the icon with a blue sphere)

appears under the WebService package in the Explorer. If you expand this node,

the Explorer looks like this:

Specifying the Web Service’s SOAP RPC URL

The SOAP RPC URL property locates the SOAP rpcrouter Servlet of the Apache

SOAP runtime on the application server. This property includes a string called the

context root or web context. This string must match the web context property of the

J2EE application WAR node that you will create later in “Specifying the Web Context

Property” on page 86.

To set the SOAP RPC URL property:

1. Display the properties of the DiningGuideWebService node.

Select the DiningGuideWebService node and view the properties in the

Properties window. If the Properties window is not displayed, choose View →
Properties.

2. Display the property editor for the SOAP RPC URL property.

Click once in the value field, then click the ellipsis button that appears to display the

editor.

3. Change the string DiningGuideWebService in the URL to
DiningGuideContext , so that the entire URL is:

http://localhost:8000/DiningGuideContext/servlet/rpcrouter

New web service

Included methods
Chapter 4 Creating the DiningGuide Application’s Web Service 83

Generating the Web Service’s Runtime Classes

Before you can assemble the web service as a J2EE application and deploy it for

testing, you must generate the web service’s runtime classes. When the architecture

is multitier, the IDE generates four classes to implement the web service, three of

which are for a generated EJB component.

To generate a web service’s runtime classes:

● Right-click the DiningGuideWebService node and choose Generate/Compile
Java File.

When the operation is complete, the word “Finished” appears in the IDE’s output

window. Runtime classes that are EJB components for implementing the SOAP RPC

web service appear in the Explorer:

Testing the Web Service

Testing your web service requires the following tasks:

1. Creating a test client that includes:

■ A test client

■ A J2EE application that references both the EJB module the web service

2. Specify the web context property of the web service WAR file

3. Deploying the test application

4. Using the test application to test the web service

EJB components for
implementing and testing
the web service
84 Forte for Java 4, Enterprise Edition Tutorial • June 2002

The Web Services test application generates a JSP page for each XML operation in

the web service, plus a welcome page to organize them for viewing in a browser.

When you execute the test client, you exercise the XML operations from the welcome

page.

Creating a Test Client and Test Application

To test your web service, create a test client and a J2EE application. Add the EJB

modules and the web service module to the J2EE application.

Tip – When you create the test client, make it the default test client for the web

service. Then when you deploy the J2EE application, the test client is deployed as

well.

To create and deploy a client application for your web service:

1. In the Explorer, right-click the DiningGuideWebService node () and choose
New Client.

The New Client dialog box is displayed.

The option to make this client the default test client for the web service is selected by

default.

2. Accept all the defaults and click OK.

A new client node appears in the Explorer (). Now create a new J2EE application

for the web service.

3. Right-click the WebService package and choose New → J2EE → Application.

The New wizard is displayed.

4. Type DiningGuideApp in the Name field and click Finish.

The new J2EE application node () appears under the WebService package. Now

add the web service to the application.
Chapter 4 Creating the DiningGuide Application’s Web Service 85

5. Right-click the DiningGuideApp node and choose Add Module.

The Add Module to Application dialog box appears.

6. In the dialog box, expand the DiningGuide filesystem and both the Data and
WebService packages

7. Using Control-Click, select both the DiningGuideManager_EJBModule and the
DiningGuideWebService nodes.

The dialog box looks like this:

8. Click OK to accept the selection and close the dialog box.

9. In the Explorer, expand the DiningGuideApp J2EE application.

Both the DiningGuideWebService ’s WAR and EJB JAR files have been added to

the application, as well as the DiningGuideManager_EJBModule :

Specifying the Web Context Property

Now specify a web context for the new J2EE application in the web service’s WAR

file. This must be the same context that you specified in “Specifying the Web

Service’s SOAP RPC URL” on page 83.
86 Forte for Java 4, Enterprise Edition Tutorial • June 2002

1. Display the Properties window of the DiningGuideWebService_War file inside
the DiningGuideApp application.

Select the node and view the properties in the Properties window. If the Properties

window is not already displayed, choose View → Properties.

2. In the Web Context field, type DiningGuideContext for the property value.

3. Choose File → Save All.

You are now ready to deploy the DiningGuideApp test application.

Deploying the Test Application

Note – Make sure the PointBase Server is running (see Step 1 under “Creating the

Tutorial Database Tables” on page 8) before you deploy a J2EE application that

accesses the database. In addition, make sure the J2EE RI server is not running

outside the IDE. The deployment process automatically starts the J2EE RI server (or

restarts it if it is already running).

To deploy the DiningGuideApp application:

1. In the Explorer, right-click the DiningGuideApp node () and choose Deploy.

A progress monitor window shows the deployment process running.

2. Verify that the application is deployed.

You can read the progress of deployment in the IDE’s output window, on the RI

Application tab. At the end, the text there should show that deployment of

DiningGuideApp has completed.

The Execution window of the Explorer displays an RI Instance 1 node.

3. Click the Editing tab of the IDE to return to the Explorer.

A new DiningGuideWebServiceClientProxy appears in the Explorer.

4. Expand the DiningGuideWebServiceClient$Documents node under the
WebService package.

The following supporting items have been created:

■ A JSP page for each method

■ An HTML welcome page

■ A JSP error page

The Explorer looks like this:
Chapter 4 Creating the DiningGuide Application’s Web Service 87

These files are also referenced under the Generated Documents node under the

DiningGuideWebServiceClient node.

Using the Test Application to Test the Web Service

For an explanation of the details of how SOAP requests and responses are passed

between the client and the web service, see Building Web Services, available from the

Forte for Java 4 portal’s Documentation page at

http://forte.sun.com/ffj/documentation/index.html .

To test the web service:

1. In the Explorer, right-click the DiningGuideWebServiceClient node () and
choose Execute.

The IDE automatically starts the built-in Tomcat web server, launches the default

web browser, and displays the client’s generated welcome page

(DiningGuideWebServiceClient_SOAP.html):

Generated client pages
88 Forte for Java 4, Enterprise Edition Tutorial • June 2002

http://forte.sun.com/ffj/documentation/index.html

This page enables you to test whether the operations work as expected.

2. Test the getCustomerreviewsByRestaurant by typing French Lemon in the
text field and clicking the Invoke button.

A SOAP message is created and sent to the application server. The

DiningGuideApp web service turns the SOAP message into a method invocation of

the DiningGuideManager.getCustomerreviewsByRestaurant method. This

method returns a collection that the generated JSP page,
Chapter 4 Creating the DiningGuide Application’s Web Service 89

getCustomerreviewsByRestaurant_SOAP.jsp , displays as a collection of

customer review data. The XML wrapper containing the return value is displayed as

shown.

The data includes all the records entered for the French Lemon restaurant. Refer to

TABLE 1-6 to verify the data. Or you can verify the data by starting the PointBase

console and running the following SQL statement:

select * from CustomerReview;

The results show what CustomerReview records you have entered.

3. Use the Back button on your browser to return to the welcome page.

4. Test the createCustomerreview operation by typing French Lemon in the
restaurantname field, and whatever you want in the other two fields.

For example:

Customer reviews
90 Forte for Java 4, Enterprise Edition Tutorial • June 2002

5. Click the Invoke button.

This method takes a complex Java object as an input parameter. The generated JSP

page, createCustomerreview_SOAP.jsp , prompts for the three inputs. These are

then converted into XML and passed to the SOAP protocol, which sends a request to

the web service tier. The service receives the request and enters it into the database.

This method returns a void, so the JSP page is blank:

6. Use the Back button on your browser to return to the welcome page.
Chapter 4 Creating the DiningGuide Application’s Web Service 91

7. Test the getAllRestaurants operation by clicking its Invoke button on the
welcome page.

This method does not require an input parameter. It returns a collection of restaurant

data, which the getAllRestaurants_SOAP.jsp page displays as XML:
92 Forte for Java 4, Enterprise Edition Tutorial • June 2002

Notice the Restaurant record you entered when you tested the Restaurant entity

bean (see “Using the Test Client to Test the Entity Bean” on page 53) is the last

record on the page.

You have successfully created a web service for the DiningGuide tutorial. In

Chapter 5, you will use a provided Swing client to run the DiningGuide application.

Making Your Web Service Available to
Other Developers

You have learned a convenient method for testing web services if you are a web

services developer. However, other development groups in your

organization—particularly the client developers—need to test their work against

your web service, as well. You can easily provide them with your web service’s

WSDL file. From this file, they can generate a client proxy from which they can build

the application’s client. They can then test the client against your web service, if you

provide them with the URL of your deployed web service (and make sure the web

server is running).

To make web services available to other developers involves these tasks:

1. The web services developer:

■ Generates a WSDL file from the web service

■ Makes the WSDL file available to the target user

■ Provides the target user with the URL of the deployed web service

2. The target user:

■ Adds the WSDL file to a mounted filesystem in the Explorer

■ Creates a web service client from this WSDL

■ Generates a client proxy

■ Builds the client around the client proxy

■ Specifies the web service URL as the SOAP RPC URL property of the client

proxy

Generating the client proxy generates the JSP pages required for developing a real

client for the application.
Chapter 4 Creating the DiningGuide Application’s Web Service 93

Generating the WSDL File

The first step in sharing access to the application’s web service is to generate a

WSDL file for the web service. This is performed by the developers of the web

service.

To generate a WSDL file for the web service:

1. In the Explorer, right-click the DiningGuideWebService node () and choose
Generate WSDL.

A WSDL file (the node with a green sphere) named DiningGuideWebService
is created under the WebService package.

You can find this file on your operating system’s file system, named

DiningGuideWebService.wsdl .

2. Make this file available to other development teams.

You can attach the file to an email message or post it on a web site.

Generating a Client Proxy From the WSDL File

The second part of sharing access to the application’s web service is to generate all

the web service supporting files from the WSDL file. This is performed by the

developers of the client.

To generate the web service files and client proxy from the WSDL file:

1. On your operating system’s file system, create a directory and place the
DiningGuideWebService.wsdl file in it.

2. In the Forte for Java 4 Explorer, choose New → Mount Filesystem.

The New wizard is displayed.

3. Select Local Directory and click Next.

The Select Directory pane of the New wizard is displayed.

4. Find the directory you created in Step 1 and click Finish.

The directory is mounted in the Explorer.

5. Right-click the new directory and choose New → Java Package.

6. Type MyClientPackage in the Name field and click Finish.

MyClientPackage is displayed in the mounted directory.

7. In the Explorer choose New → Web Services → Web Service Client.

The New wizard is displayed.
94 Forte for Java 4, Enterprise Edition Tutorial • June 2002

8. Type NewClient in the Name field.

9. Make sure the package is the MyClientPackage package.

10. For the Source, select the Local WSDL File option and click Next.

The Select Local WSDL File pane of the New wizard is displayed.

11. Select the DiningGuideWebService WSDL file in the MyClientPackage
package under your mounted directory and click Finish.

A new client node () appears in the Explorer.

12. Right-click the NewClient client node and choose Generate Client Proxy.

A Generated Documents node and a MyClientProxy bean are generated in the

Explorer. The expanded Generated Documents node reveals the JSP pages and

welcome page required for the client, as shown:

You can now use the client to test the web service, as described in “Using the Test

Application to Test the Web Service” on page 88.

When your application is finished, you will probably publish your web service to a

UDDI registry, to make it available to developers outside your immediate locale.

Forte for Java 4 provides a single-user internal UDDI registry to test this process,

and the StockApp example, available from the Forte for Java 4 portal’s Examples

and Tutorials page at

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html
illustrates how to use this feature. For information on publishing to an external

UDDI registry, see Building Web Services.

Generated support files
Chapter 4 Creating the DiningGuide Application’s Web Service 95

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

96 Forte for Java 4, Enterprise Edition Tutorial • June 2002

CHAPTER 5

Creating a Client for the Tutorial
Application

This chapter shows you how to run the DiningGuide application using a provided

Swing client that communicates with the web service you created in Chapter 4.

The provided client contains two Swing classes, RestaurantTable and

CustomerReviewTable . The code for these classes is provided in Appendix A. You

will create two classes and replace their default code with the code you copy and

paste from Appendix A. You then execute the RestaurantTable class to run the

application.

This client is very primitive, provided only to illustrate how to access the methods of

the client proxy you have generated for the web service.

This chapter covers these topics:

■ “Creating the Client With the Provided Code,” which follows

■ “Running the Tutorial Application” on page 99

■ “Examining the Client Code” on page 102

Creating the Client With the Provided
Code

To use the provided code to create your client, create two classes, then replace their

entire code with the source code provided in Appendix A. Code from these classes

instantiates the client proxy, which is assumed to be in the same package. Therefore,

create the client classes within the WebService package.
97

To create the two classes:

1. In the Explorer, right-click the WebService node and choose New → Classes →
Class.

The New wizard is displayed.

2. Name the class RestaurantTable and click Finish.

The new RestaurantTable classes is created under the WebService package.

3. Repeat Step 1 and Step 2 to create the CustomerReviewTable class.

4. Open the classes in the Source Editor and delete all the default code from each
class.

5. Copy all the code from “RestaurantTable.java Source” on page 126 and the
following three pages and paste it into the body of the RestaurantTable class.

Tip – Copy this long code very carefully. Set your Acrobat Reader to display a

whole page at a time. Select all the code from the first page of RestaurantTable
code and paste it into the target file in the Source Editor. At the end of the pasted

code, press Enter to start a new line. Then copy all the code from the next page of

RestaurantTable code and paste it into the Source Editor, starting at the new line

you created previously. Repeat until all the code is pasted.

6. Select all the pasted code in the Source Editor and press Control-Shift F.

This action reformats all the code correctly.

7. Right-click the RestaurantTable class node and choose Compile.

The RestaurantTable class should compile without errors.

8. Repeat Step 5, copying all the code from “CustomerReviewTable.java Source”
on page 130 and the following three pages into the CustomerReviewTable class
body.

9. Repeat Step 6 to format the pasted code properly.

10. Right-click the CustomerReviewTable node and choose Compile.

The CustomerReviewTable class should compile without errors.

If you examine the code in the RestaurantTable and CustomerReviewTable
classes, there are several comments warning against modifying some sections. These

sections are Swing component code created in the Form Editor and should not be

modified in the Source Editor. Normally, such restricted code has a blue background.

If you restart the IDE, the source for this file will have a blue background for the

restricted areas, and you will not be able to edit the code in those sections.
98 Forte for Java 4, Enterprise Edition Tutorial • June 2002

When you create a Swing client in the IDE’s Form Editor, the IDE generates a .form
file and a .java file. The .form file enables you to edit the GUI components in the

Form Editor. However, the .form files have not been provided for the

RestaurantTable and CustomerReviewTable classes, which prevents you from

modifying the GUI components in the Form Editor.

Running the Tutorial Application

Run the DiningGuide application by executing the RestaurantTable class, as

follows:

1. In the IDE, click the Runtime tab of the Explorer.

2. Expand the Server Registry , the Installed Servers , and the J2EE
Reference Implementation 1.3.1 nodes.

Because you deployed your web service previously (see “Deploying the Test

Application” on page 87), you do not need to redeploy it. However, the server where

your web service is deployed must be running. Step 3 takes care of this issue.

3. Right-click the RI Instance 1 node and choose Start Server if the command is
activated.

If the command is not activated (dimmed), do nothing, because the J2EE RI server is

already running.

The PointBase server must also be running. If your PointBase server is already

running, skip Step 4 and continue with Step 5.

4. If the PointBase Network Server is not running, choose Tools → PointBase
Network Server → Start Server.

5. Click the Filesystems tab of the Explorer.
Chapter 5 Creating a Client for the Tutorial Application 99

6. Right-click the RestaurantTable node and choose Execute.

The IDE switches to Runtime mode. A Restaurant node appears in the execution

window. Then, the RestaurantTable window is displayed, as shown:

7. Select any restaurant in the table and Click the View Customer Comments button.

For example, select the Bay Fox restaurant. The CustomerReviewTable window is

displayed. If any comments exist in the database for this restaurant, they are

displayed, as shown. Otherwise, an empty table is displayed.
100 Forte for Java 4, Enterprise Edition Tutorial • June 2002

8. Type a something in the Customer Name field and in the Review field and click
the Submit Customer Review button.

For example:

The record is entered in the database and is displayed on the same

CustomerReviewTable window:

9. Play around with the features, as described in “User’s View of the Tutorial
Application” on page 15.

10. Quit the application by closing any window.

After you quit the application, the execution window shows that the J2EE RI server

process is still running. You need not stop the J2EE RI server. If you redeploy any of

the tutorial’s J2EE applications or rerun the test clients (but not this Swing client),

the server is automatically restarted.
Chapter 5 Creating a Client for the Tutorial Application 101

When you quit the IDE, a dialog box is displayed for terminating any process that is

still running (including the J2EE RI server or the Tomcat server). Select each running

process and click the End Tasks button. You can also manually terminate any process

at any time while the IDE is running by right-clicking its node in the execution

window and choosing Terminate Process.

Examining the Client Code

The two client classes you have installed in the DiningGuide application are

composed of Swing components and actions that were created in the Form Editor,

and several methods that were created in the Source Editor. The methods added in

the Source Editor include the crucial task of instantiating the client proxy so that its

methods become available to the client.

To help you understand how the Swing client interacts with the web service, the

next few sections discuss the main actions of the client, namely:

■ “Displaying Restaurant Data” on page 102

■ “Displaying Customer Review Data for a Selected Restaurant” on page 104

■ “Creating a New Customer Review Record” on page 106

Displaying Restaurant Data

Displaying restaurant data is accomplished by the RestaurantTable class’s

methods, which instantiate the client proxy and call its getAllRestaurants
method, as follows:
102 Forte for Java 4, Enterprise Edition Tutorial • June 2002

1. RestaurantTable.getAllRestaurants method instantiates the client proxy,

calls the client proxy’s getAllRestaurants method to fetch the restaurant data,

and returns the fetched restaurant data as a vector.

2. The RestaurantTable constructor puts the returned restaurant data into the

restaurantList variable and calls RestaurantTable.putDataToTable .

3. The RestaurantTable.putDataToTable method iterates through the vector

and populates the table.

private Vector getAllRestaurants() {
Vector restList = new Vector();
try {

DiningGuideWebServiceClientProxy restaurantCP = new
DiningGuideWebServiceClientProxy();
restList =

(java.util.Vector)restaurantCP.getAllRestaurants();
}
catch (Exception ex) {

System.err.println("Caught an exception.");
ex.printStackTrace();

}
return restList;

}

public RestaurantTable() {
initComponents();
restaurantList=getAllRestaurants();
putDataToTable();

}

private void putDataToTable() {
Iterator j=restaurantList.iterator();
while (j.hasNext()) {

RestaurantDetail ci = (RestaurantDetail)j.next();
String strRating = null;
String[] str ={ci.getRestaurantname(), ci.getCuisine(),

ci.getNeighborhood(), ci.getAddress(), ci.getPhone(),
ci.getDescription(), strRating.valueOf(ci.getRating()),

};
TableModel.addRow(str);

}
}

Chapter 5 Creating a Client for the Tutorial Application 103

4. The RestaurantTable.Main method displays the table as a Swing jTable

component.

Displaying Customer Review Data for a Selected

Restaurant

Displaying customer review data begins when the RestaurantTable ’s button

component’s action instantiates a CustomerReviewTable . The

CustomerReviewTable ’s methods fetch the customer review data by means of the

client proxy’s methods, and populate the table. The RestaurantTable ’s button

component’s action then displays it, as follows:

1. When the RestaurantTable ’s button is pressed to retrieve customer review

data, the RestaurantTable.jButton1ActionPerformed method instantiates

a new CustomerReviewTable object, calls its putDataToTable method, and

passes it the data of the selected column.

public static void main(String args[]) {
new RestaurantTable().show();

}

private void jButton1ActionPerformed(java.awt.event.ActionEvent
evt) {//GEN-FIRST:event_jButton1ActionPerformed

int r =jTable1.getSelectedRow();
int c = jTable1.getSelectedColumnCount();
String i =(String)TableModel.getValueAt(r,0);
CustomerReviewTable crt = new CustomerReviewTable();
crt.putDataToTable(i);
crt.show();
System.out.println(i);

}//GEN-LAST:event_jButton1ActionPerformed
104 Forte for Java 4, Enterprise Edition Tutorial • June 2002

2. The CustomerReviewTable.putDataToTable method calls the

CustomerReviewTable.getCustomerReviewByName method, passing it the

selected restaurant name, assigning the returned vector to the customerList
variable.

3. The CustomerReviewTable.getCustomerReviewByName method instantiates

a client proxy (if required) and calls its getCustomerreviewsByRestaurant
method, passing it the name of the selected restaurant.

public void putDataToTable(java.lang.String restaurantname) {
RestaurantName = restaurantname;
java.util.Vector customerList =

getCustomerReviewByName(restaurantname);
Iterator j=customerList.iterator();
while (j.hasNext()) {

CustomerreviewDetail ci = (CustomerreviewDetail)j.next();
String[] str = {ci.getCustomername(),ci.getReview()
};
TableModel.addRow(str);

}
}

private Vector getCustomerReviewByName(java.lang.String
restaurantname) {

Vector custList = new Vector();
try {

DiningGuideWebServiceClientProxy custCP = new
DiningGuideWebServiceClientProxy();
custList =

(java.util.Vector)custCP.getCustomerreviewsByRestaurant(restaura
ntname);

}
catch (Exception ex) {

System.err.println("Caught an exception.");
ex.printStackTrace();

}
return custList;

}

Chapter 5 Creating a Client for the Tutorial Application 105

4. The review data is passed up to the CustomerReviewTable.putDataToTable
method, which iterates through it and populates the table.

5. The RestaurantTable.jButton1ActionPerformed method then displays the

data.

Creating a New Customer Review Record

When the user types a name and review comments on the Customer Review

window and clicks the Submit Customer Review button, the

CustomerReviewTable ’s jButton1ActionPerformed method creates the review

record in the database by means of the proxy’s methods, then refreshes the

Customer Review window, as follows:

public void putDataToTable(java.lang.String restaurantname) {
RestaurantName = restaurantname;
java.util.Vector customerList =

getCustomerReviewByName(restaurantname);
Iterator j=customerList.iterator();
while (j.hasNext()) {

CustomerreviewDetail ci = (CustomerreviewDetail)j.next();
String[] str = {ci.getCustomername(),ci.getReview()
};
TableModel.addRow(str);

}
}

private void jButton1ActionPerformed(java.awt.event.ActionEvent
evt) {//GEN-FIRST:event_jButton1ActionPerformed

int r =jTable1.getSelectedRow();
int c = jTable1.getSelectedColumnCount();
String i =(String)TableModel.getValueAt(r,0);
CustomerReviewTable crt = new CustomerReviewTable();
crt.putDataToTable(i);
crt.show();
System.out.println(i);

}//GEN-LAST:event_jButton1ActionPerformed
106 Forte for Java 4, Enterprise Edition Tutorial • June 2002

1. When the CustomerReviewTable ’s button is pressed to submit a customer

review record, the CustomerReviewTable.jButton1ActionPerformed
method instantiates a new client proxy (if required) and calls its

createCustomerreview method, passing it the restaurant name, the customer

name, and the review data.

2. This same method (jButton1ActionPerformed) calls the

CustomerReviewTable.refreshView method.

private void jButton1ActionPerformed(java.awt.event.ActionEvent
evt) {

try {
DiningGuideWebServiceClientProxy reviewCP = new
DiningGuideWebServiceClientProxy();
reviewCP.createCustomerreview(RestaurantName,

customerNameField.getText(),reviewField.getText());
}
catch (Exception ex) {

System.err.println("Caught an exception.");
ex.printStackTrace();

}
refreshView();

}

private void jButton1ActionPerformed(java.awt.event.ActionEvent
evt) {

try {
DiningGuideWebServiceClientProxy reviewCP = new
DiningGuideWebServiceClientProxy();
reviewCP.createCustomerreview(RestaurantName,

customerNameField.getText(),reviewField.getText());
}
catch (Exception ex) {

System.err.println("Caught an exception.");
ex.printStackTrace();

}
refreshView();

}

Chapter 5 Creating a Client for the Tutorial Application 107

3. The CustomerReviewTable.refreshView method calls the putDataToTable
method, passing it the restaurant name.

4. The CustomerReviewTable.putDataToTable method populates the table.

void refreshView() {
try{

while(TableModel.getRowCount()>0) {
TableModel.removeRow(0);

}
putDataToTable(RestaurantName);
repaint();

}
catch (Exception ex) {

ex.printStackTrace();
}

}

public void putDataToTable(java.lang.String restaurantname) {
RestaurantName = restaurantname;
java.util.Vector customerList =

getCustomerReviewByName(restaurantname);
Iterator j=customerList.iterator();
while (j.hasNext()) {

CustomerreviewDetail ci = (CustomerreviewDetail)j.next();
String[] str = {ci.getCustomername(),ci.getReview()
};
TableModel.addRow(str);

}
}

108 Forte for Java 4, Enterprise Edition Tutorial • June 2002

5. Then the CustomerReviewTable.refreshView method repaints the window,

showing the new data.

void refreshView() {
try{

while(TableModel.getRowCount()>0) {
TableModel.removeRow(0);

}
putDataToTable(RestaurantName);
repaint();

}
catch (Exception ex) {

ex.printStackTrace();
}

}

Chapter 5 Creating a Client for the Tutorial Application 109

110 Forte for Java 4, Enterprise Edition Tutorial • June 2002

APPENDIX A

DiningGuide Source Files

This appendix displays the code for the following DiningGuide components:

■ EJB tier components:

■ “RestaurantBean.java Source” on page 112

■ “RestaurantDetail.java Source” on page 115

■ “CustomerreviewBean.java Source” on page 119

■ “CustomerreviewDetail.java Source” on page 121

■ “DiningGuideManagerBean.java Source” on page 123

■ Client components:

■ “RestaurantTable.java Source” on page 126

■ “CustomerReviewTable.java Source” on page 130

This code is also available as source files within the DiningGuide application zip file,

which you can download from the Forte for Java Developer Resources portal at:

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

Tip – If you use these files to cut and paste code into the Forte for Java 4 Source

Editor, all formatting is lost. To automatically reformat the code in the Source Editor,

select the code you want to reformat, then press Control- Shift F.
111

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

RestaurantBean.java Source

package Data;

import javax.ejb.*;

public abstract class RestaurantBean implements javax.ejb.EntityBean {

 private javax.ejb.EntityContext context;

 /**
 * @see javax.ejb.EntityBean#setEntityContext(javax.ejb.EntityContext)
 */
 public void setEntityContext(javax.ejb.EntityContext aContext) {
 context=aContext;
 }

 /**
 * @see javax.ejb.EntityBean#ejbActivate()
 */
 public void ejbActivate() {

 }

 /**
 * @see javax.ejb.EntityBean#ejbPassivate()
 */
 public void ejbPassivate() {

 }

 /**
 * @see javax.ejb.EntityBean#ejbRemove()
 */
 public void ejbRemove() {

 }
112 Forte for Java 4, Enterprise Edition Tutorial • June 2002

 /**
 * @see javax.ejb.EntityBean#unsetEntityContext()
 */
 public void unsetEntityContext() {
 context=null;
 }

 /**
 * @see javax.ejb.EntityBean#ejbLoad()
 */
 public void ejbLoad() {

 }

 /**
 * @see javax.ejb.EntityBean#ejbStore()
 */
 public void ejbStore() {

 }

 public abstract java.lang.String getRestaurantname();
 public abstract void setRestaurantname(java.lang.String restaurantname);

 public abstract java.lang.String getCuisine();
 public abstract void setCuisine(java.lang.String cuisine);

 public abstract java.lang.String getNeighborhood();
 public abstract void setNeighborhood(java.lang.String neighborhood);

 public abstract java.lang.String getAddress();
 public abstract void setAddress(java.lang.String address);

 public abstract java.lang.String getPhone();
 public abstract void setPhone(java.lang.String phone);

 public abstract java.lang.String getDescription();
 public abstract void setDescription(java.lang.String description);

 public abstract java.lang.Integer getRating();
 public abstract void setRating(java.lang.Integer rating);

 public java.lang.String ejbCreate(java.lang.String restaurantname,
java.lang.String cuisine, java.lang.String neighborhood, java.lang.String
address, java.lang.String phone, java.lang.String description,
java.lang.Integer rating) throws javax.ejb.CreateException {
Appendix A DiningGuide Source Files 113

 if (restaurantname == null) {
 throw new javax.ejb.CreateException("The restaurant name is
required.");
 }
 setRestaurantname(restaurantname);
 setCuisine(cuisine);
 setNeighborhood(neighborhood);
 setAddress(address);
 setPhone(phone);
 setDescription(description);
 setRating(rating);
 return null;
 }

public void ejbPostCreate(java.lang.String restaurantname, java.lang.String
cuisine, java.lang.String neighborhood, java.lang.String address,
java.lang.String phone, java.lang.String description, java.lang.Integer rating)
throws javax.ejb.CreateException {
 }

 public Data.RestaurantDetail getRestaurantDetail() {
 return (new RestaurantDetail(getRestaurantname(),
 getCuisine(),getNeighborhood(), getAddress(), getPhone(),
 getDescription(), getRating()));
 }
}

114 Forte for Java 4, Enterprise Edition Tutorial • June 2002

RestaurantDetail.java Source

package Data;

import java.beans.*;

public class RestaurantDetail extends Object implements java.io.Serializable {

 private static final String PROP_SAMPLE_PROPERTY = "SampleProperty";

 private String sampleProperty;

 private PropertyChangeSupport propertySupport;

 /** Holds value of property restaurantname. */
 private String restaurantname;

 /** Holds value of property cuisine. */
 private String cuisine;

 /** Holds value of property neighborhood. */
 private String neighborhood;

 /** Holds value of property address. */
 private String address;

 /** Holds value of property phone. */
 private String phone;

 /** Holds value of property description. */
 private String description;

 /** Holds value of property rating. */
 private Integer rating;

 /** Creates new RestaurantDetail */
 public RestaurantDetail() {
 propertySupport = new PropertyChangeSupport(this);
 }
Appendix A DiningGuide Source Files 115

 public RestaurantDetail(java.lang.String restaurantname, java.lang.String
cuisine, java.lang.String neighborhood, java.lang.String address,
java.lang.String phone, java.lang.String description, java.lang.Integer rating)
{
 System.out.println("Creating new RestaurantDetail");
 setRestaurantname(restaurantname);
 setCuisine(cuisine);
 setNeighborhood(neighborhood);
 setAddress(address);
 setPhone(phone);
 setDescription(description);
 setRating(rating);
 }

 public String getSampleProperty() {
 return sampleProperty;
 }

 public void setSampleProperty(String value) {
 String oldValue = sampleProperty;
 sampleProperty = value;
 propertySupport.firePropertyChange(PROP_SAMPLE_PROPERTY, oldValue,
sampleProperty);
 }

 public void addPropertyChangeListener(PropertyChangeListener listener) {
 propertySupport.addPropertyChangeListener(listener);
 }

public void removePropertyChangeListener(PropertyChangeListener listener) {
 propertySupport.removePropertyChangeListener(listener);
 }

 /** Getter for property restaurantname.
 * @return Value of property restaurantname.
 */
 public String getRestaurantname() {
 return this.restaurantname;
 }

 /** Setter for property restaurantname.
 * @param restaurantname New value of property restaurantname.
 */
 public void setRestaurantname(String restaurantname) {
 this.restaurantname = restaurantname;
 }
116 Forte for Java 4, Enterprise Edition Tutorial • June 2002

 /** Getter for property cuisine.
 * @return Value of property cuisine.
 */
 public String getCuisine() {
 return this.cuisine;
 }

 /** Setter for property cuisine.
 * @param cuisine New value of property cuisine.
 */
 public void setCuisine(String cuisine) {
 this.cuisine = cuisine;
 }

 /** Getter for property neighborhood.
 * @return Value of property neighborhood.
 */
 public String getNeighborhood() {
 return this.neighborhood;
 }

 /** Setter for property neighborhood.
 * @param neighborhood New value of property neighborhood.
 */
 public void setNeighborhood(String neighborhood) {
 this.neighborhood = neighborhood;
 }

 /** Getter for property address.
 * @return Value of property address.
 */
 public String getAddress() {
 return this.address;
 }

 /** Setter for property address.
 * @param address New value of property address.
 */
 public void setAddress(String address) {
 this.address = address;
 }

 /** Getter for property phone.
 * @return Value of property phone.
 */
 public String getPhone() {
 return this.phone;
 }
Appendix A DiningGuide Source Files 117

 /** Setter for property phone.
 * @param phone New value of property phone.
 */
 public void setPhone(String phone) {
 this.phone = phone;
 }

 /** Getter for property description.
 * @return Value of property description.
 */
 public String getDescription() {
 return this.description;
 }

 /** Setter for property description.
 * @param description New value of property description.
 */
 public void setDescription(String description) {
 this.description = description;
 }

 /** Getter for property rating.
 * @return Value of property rating.
 */
 public Integer getRating() {
 return this.rating;
 }

 /** Setter for property rating.
 * @param rating New value of property rating.
 */
 public void setRating(Integer rating) {
 this.rating = rating;
 }

}

118 Forte for Java 4, Enterprise Edition Tutorial • June 2002

CustomerreviewBean.java Source

package Data;

import javax.ejb.*;

public abstract class CustomerreviewBean implements javax.ejb.EntityBean {

 private javax.ejb.EntityContext context;

 /**
 * @see javax.ejb.EntityBean#setEntityContext(javax.ejb.EntityContext)
 */
 public void setEntityContext(javax.ejb.EntityContext aContext) {
 context=aContext;
 }

 /**
 * @see javax.ejb.EntityBean#ejbActivate()
 */
 public void ejbActivate() {

 }

 /**
 * @see javax.ejb.EntityBean#ejbPassivate()
 */
 public void ejbPassivate() {

 }

 /**
 * @see javax.ejb.EntityBean#ejbRemove()
 */
 public void ejbRemove() {

 }
Appendix A DiningGuide Source Files 119

 /**
 * @see javax.ejb.EntityBean#unsetEntityContext()
 */
 public void unsetEntityContext() {
 context=null;
 }

 /**
 * @see javax.ejb.EntityBean#ejbLoad()
 */
 public void ejbLoad() {

 }

 /**
 * @see javax.ejb.EntityBean#ejbStore()
 */
 public void ejbStore() {

 }

 public abstract java.lang.String getRestaurantname();
 public abstract void setRestaurantname(java.lang.String restaurantname);

 public abstract java.lang.String getCustomername();
 public abstract void setCustomername(java.lang.String customername);

 public abstract java.lang.String getReview();
 public abstract void setReview(java.lang.String review);

 public Data.CustomerreviewKey ejbCreate(java.lang.String restaurantname,
java.lang.String customername, java.lang.String review) throws
javax.ejb.CreateException {
 if ((restaurantname == null) || (customername == null)) {
 throw new javax.ejb.CreateException("Both the restaurant name and
customer name are required.");
 }
 setRestaurantname(restaurantname);
 setCustomername(customername);
 setReview(review);
 return null;
 }
120 Forte for Java 4, Enterprise Edition Tutorial • June 2002

CustomerreviewDetail.java Source

public void ejbPostCreate(java.lang.String restaurantname, java.lang.String
customername, java.lang.String review) throws javax.ejb.CreateException {
 }

 public Data.CustomerreviewDetail getCustomerreviewDetail() {
 return (new CustomerreviewDetail(getRestaurantname(),
 getCustomername(), getReview()));
 }
}

package Data;

import java.beans.*;

public class CustomerreviewDetail extends Object implements
java.io.Serializable {

 private static final String PROP_SAMPLE_PROPERTY = "SampleProperty";

 private String sampleProperty;

 private PropertyChangeSupport propertySupport;

 /** Holds value of property restaurantname. */
 private String restaurantname;

 /** Holds value of property customername. */
 private String customername;

 /** Holds value of property review. */
 private String review;

 /** Creates new CustomerreviewDetail */
 public CustomerreviewDetail() {
 propertySupport = new PropertyChangeSupport(this);
 }
Appendix A DiningGuide Source Files 121

 public CustomerreviewDetail(java.lang.String restaurantname,
java.lang.String customername, java.lang.String review) {
 System.out.println("Creating new CustomerreviewDetail");
 setRestaurantname(restaurantname);
 setCustomername(customername);
 setReview(review);
 }

 public String getSampleProperty() {
 return sampleProperty;
 }

 public void setSampleProperty(String value) {
 String oldValue = sampleProperty;
 sampleProperty = value;
 propertySupport.firePropertyChange(PROP_SAMPLE_PROPERTY, oldValue,
sampleProperty);
 }

 public void addPropertyChangeListener(PropertyChangeListener listener) {
 propertySupport.addPropertyChangeListener(listener);
 }

public void removePropertyChangeListener(PropertyChangeListener listener) {
 propertySupport.removePropertyChangeListener(listener);
 }

 /** Getter for property restaurantname.
 * @return Value of property restaurantname.
 */
 public String getRestaurantname() {
 return this.restaurantname;
 }

 /** Setter for property restaurantname.
 * @param restaurantname New value of property restaurantname.
 */
 public void setRestaurantname(String restaurantname) {
 this.restaurantname = restaurantname;
 }

 /** Getter for property customername.
 * @return Value of property customername.
 */
 public String getCustomername() {
 return this.customername;
 }
122 Forte for Java 4, Enterprise Edition Tutorial • June 2002

DiningGuideManagerBean.java
Source

 /** Setter for property customername.
 * @param customername New value of property customername.
 */
 public void setCustomername(String customername) {
 this.customername = customername;
 }

 /** Getter for property review.
 * @return Value of property review.
 */
 public String getReview() {
 return this.review;
 }

 /** Setter for property review.
 * @param review New value of property review.
 */
 public void setReview(String review) {
 this.review = review;
 }
}

package Data;

import javax.ejb.*;
import javax.naming.*;

public class DiningGuideManagerBean implements javax.ejb.SessionBean {
 private javax.ejb.SessionContext context;
 private RestaurantHome myRestaurantHome;
 private CustomerreviewHome myCustomerreviewHome;

 /**
 * @see javax.ejb.SessionBean#setSessionContext(javax.ejb.SessionContext)
 */
 public void setSessionContext(javax.ejb.SessionContext aContext) {
 context=aContext;
 }
Appendix A DiningGuide Source Files 123

 /**
 * @see javax.ejb.SessionBean#ejbActivate()
 */
 public void ejbActivate() {

 }

 /**
 * @see javax.ejb.SessionBean#ejbPassivate()
 */
 public void ejbPassivate() {

 }

 /**
 * @see javax.ejb.SessionBean#ejbRemove()
 */
 public void ejbRemove() {

 }

 /**
 * See section 7.10.3 of the EJB 2.0 specification
 */
 public void ejbCreate() {
 System.out.println("Entering DiningGuideManagerEJB.ejbCreate()");
 Context c = null;
 Object result = null;
 if (this.myRestaurantHome == null) {
 try {
 c = new InitialContext();
 result = c.lookup("Restaurant");
 myRestaurantHome =
 (RestaurantHome)javax.rmi.PortableRemoteObject.narrow(result,
 RestaurantHome.class);
 }
 catch (Exception e) {System.out.println("Error: "+ e); }
 }
 Context crc = null;
 Object crresult = null;
 if (this.myCustomerreviewHome == null) {
 try {
 crc = new InitialContext();
 result = crc.lookup("Customerreview");
 myCustomerreviewHome =

(CustomerreviewHome)javax.rmi.PortableRemoteObject.narrow(result,
 CustomerreviewHome.class);
 }
124 Forte for Java 4, Enterprise Edition Tutorial • June 2002

 catch (Exception e) {System.out.println("Error: "+ e); }
 }
 }

 public java.util.Vector getAllRestaurants() {
 System.out.println("Entering
DiningGuideManagerEJB.getAllRestaurants()");
 java.util.Vector restaurantList = new java.util.Vector();
 try {
 java.util.Collection rl = myRestaurantHome.findAll();
 if (rl == null) { restaurantList = null; }
 else {
 RestaurantDetail rd;
 java.util.Iterator rli = rl.iterator();
 while (rli.hasNext()) {
 rd =((Restaurant)rli.next()).getRestaurantDetail();
 System.out.println(rd.getRestaurantname());
 System.out.println(rd.getRating());
 restaurantList.addElement(rd);
 }
 }
 } catch (Exception e) {
 System.out.println("Error in
DiningGuideManagerEJB.getAllRestaurants(): " + e);
 }

System.out.println("Leaving DiningGuideManagerEJB.getAllRestaurants()");
 return restaurantList;
 }

 public java.util.Vector getCustomerreviewsByRestaurant(java.lang.String
restaurantname) {
 System.out.println("Entering
DiningGuideManagerEJB.getCustomerreviewsByRestaurant()");
 java.util.Vector reviewList = new java.util.Vector();
 try {
 java.util.Collection rl =
 myCustomerreviewHome.findByRestaurantName(restaurantname);
 if (rl == null) { reviewList = null; }
 else {
 CustomerreviewDetail crd;
 java.util.Iterator rli = rl.iterator();
 while (rli.hasNext()) {
 crd =
 ((Customerreview)rli.next()).getCustomerreviewDetail();
 System.out.println(crd.getRestaurantname());
 System.out.println(crd.getCustomername());
 System.out.println(crd.getReview());
 reviewList.addElement(crd);
 }
Appendix A DiningGuide Source Files 125

RestaurantTable.java Source

 }
 } catch (Exception e) {
 System.out.println("Error in
DiningGuideManagerEJB.getCustomerreviewsByRestaurant(): " + e);
 }
 System.out.println("Leaving
DiningGuideManagerEJB.getCustomerreviewsByRestaurant()");
 return reviewList;
 }

 public void createCustomerreview(java.lang.String restaurantname,
java.lang.String customername, java.lang.String review) {
 System.out.println("Entering
DiningGuideManagerEJB.createCustomerreview()");
 try {
 Customerreview customerrev =
myCustomerreviewHome.create(restaurantname, customername, review);
 } catch (Exception e) {
 System.out.println("Error in
DiningGuideManagerEJB.createCustomerreview(): " + e);
 }
 System.out.println("Leaving
DiningGuideManagerEJB.createCustomerreview()");
 }

 public Data.RestaurantDetail getRestaurantDetail() {
 return null;
 }

 public Data.CustomerreviewDetail getCustomerreviewDetail() {
 return null;
 }
}

package WebService;
import javax.swing.table.*;
import java.util.*;
import Data.*;

public class RestaurantTable extends javax.swing.JFrame {
126 Forte for Java 4, Enterprise Edition Tutorial • June 2002

 /** Creates new form RestaurantTable */
 public RestaurantTable() {
 initComponents();
 restaurantList=getAllRestaurants();
 putDataToTable();
 }

 /** This method is called from within the constructor to
 * initialize the form.
 * WARNING: Do NOT modify this code. The content of this method is
 * always regenerated by the Form Editor.
 */
 private void initComponents() {//GEN-BEGIN:initComponents
 jButton1 = new javax.swing.JButton();
 jScrollPane1 = new javax.swing.JScrollPane();
 jTable1 = new javax.swing.JTable();
 jLabel1 = new javax.swing.JLabel();

 getContentPane().setLayout(new
org.netbeans.lib.awtextra.AbsoluteLayout());

 addWindowListener(new java.awt.event.WindowAdapter() {
 public void windowClosing(java.awt.event.WindowEvent evt) {
 exitForm(evt);
 }
 });

 jButton1.setText("View Customer Comments");
 jButton1.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent evt) {
 jButton1ActionPerformed(evt);
 }
 });

 getContentPane().add(jButton1, new
org.netbeans.lib.awtextra.AbsoluteConstraints(200, 240, -1, -1));

 TableModel = (new javax.swing.table.DefaultTableModel (
 new Object [][] {

 },
 new String [] {

"RESTAURANT NAME", "CUISINE", "NEIGHBORHOOD", "ADDRESS", "PHONE",
"DESCRIPTION", "RATING"
 }
) {
Appendix A DiningGuide Source Files 127

 Class[] types = new Class [] {
 java.lang.String.class, java.lang.String.class,
java.lang.String.class,
java.lang.String.class,java.lang.String.class,java.lang.String.class,java.lang
.String.class
 };

 public Class getColumnClass (int columnIndex) {
 return types [columnIndex];
 }
 });
 jTable1.setModel(TableModel);
 jScrollPane1.setViewportView(jTable1);

 getContentPane().add(jScrollPane1, new
org.netbeans.lib.awtextra.AbsoluteConstraints(0, 60, 600, 100));

 jLabel1.setText("Restaurant Listing");
 getContentPane().add(jLabel1, new
org.netbeans.lib.awtextra.AbsoluteConstraints(230, 20, 110, 30));

 pack();
 }//GEN-END:initComponents

 private void jButton1ActionPerformed(java.awt.event.ActionEvent evt)
{//GEN-FIRST:event_jButton1ActionPerformed
 int r =jTable1.getSelectedRow();
 int c = jTable1.getSelectedColumnCount();

 String i =(String)TableModel.getValueAt(r,0);
 CustomerReviewTable crt = new CustomerReviewTable();
 crt.putDataToTable(i);
 crt.show();
 System.out.println(i);
 }//GEN-LAST:event_jButton1ActionPerformed

 /** Exit the Application */
 private void exitForm(java.awt.event.WindowEvent evt)
{//GEN-FIRST:event_exitForm
 System.exit(0);
 }//GEN-LAST:event_exitForm

 private void putDataToTable()
 {
 Iterator j=restaurantList.iterator();
 while (j.hasNext()) {
 RestaurantDetail ci = (RestaurantDetail)j.next();
 String strRating = null;
128 Forte for Java 4, Enterprise Edition Tutorial • June 2002

 String[] str =
{ci.getRestaurantname(),ci.getCuisine(),ci.getNeighborhood(),ci.getAddress(),
ci.getPhone(),ci.getDescription(),
 strRating.valueOf(ci.getRating()),
 };
 TableModel.addRow(str);
 }
 }
 private Vector getAllRestaurants()
 {
 Vector restList = new Vector();
 try
 {
 DiningGuideWebServiceClientProxy restaurantCP = new
DiningGuideWebServiceClientProxy();
 restList = (java.util.Vector)restaurantCP.getAllRestaurants();
 }
 catch (Exception ex)
 {
 System.err.println("Caught an exception.");
 ex.printStackTrace();
 }
 return restList;
 }

 private Vector getCustomerreviewByRestaurant(java.lang.String
restaurantname)
 {
 Vector reviewList = new Vector();
 try
 {
 DiningGuideWebServiceClientProxy restaurantCP = new
DiningGuideWebServiceClientProxy();
 reviewList =
(java.util.Vector)restaurantCP.getCustomerreviewsByRestaurant(restaurantname);
 }
 catch (Exception ex)
 {
 System.err.println("Caught an exception.");
 ex.printStackTrace();
 }
 return reviewList;
 }
 /**
 * @param args the command line arguments
 */
 public static void main(String args[]) {
 new RestaurantTable().show();
 }
Appendix A DiningGuide Source Files 129

CustomerReviewTable.java Source

 // Variables declaration - do not modify//GEN-BEGIN:variables
 private javax.swing.JButton jButton1;
 private javax.swing.JScrollPane jScrollPane1;
 private javax.swing.JTable jTable1;
 private javax.swing.JLabel jLabel1;
 // End of variables declaration//GEN-END:variables
 private DefaultTableModel TableModel;
 private java.util.Vector restaurantList = null;
}

package WebService;
import javax.swing.table.*;
import java.util.*;
import Data.*;

public class CustomerReviewTable extends javax.swing.JFrame {

 /** Creates new form CustomerReviewTable */
 public CustomerReviewTable() {
 initComponents();
 }

 /** This method is called from within the constructor to
 * initialize the form.
 * WARNING: Do NOT modify this code. The content of this method is
 * always regenerated by the Form Editor.
 */
 private void initComponents() {//GEN-BEGIN:initComponents
 jScrollPane1 = new javax.swing.JScrollPane();
 jTable1 = new javax.swing.JTable();
 jButton1 = new javax.swing.JButton();
 customerNameLabel = new javax.swing.JLabel();
 customerNameField = new javax.swing.JTextField();
 reviewLabel = new javax.swing.JLabel();
 reviewField = new javax.swing.JTextField();
 jLabel1 = new javax.swing.JLabel();
130 Forte for Java 4, Enterprise Edition Tutorial • June 2002

 getContentPane().setLayout(new
org.netbeans.lib.awtextra.AbsoluteLayout());

 addWindowListener(new java.awt.event.WindowAdapter() {
 public void windowClosing(java.awt.event.WindowEvent evt) {
 exitForm(evt);
 }
 });

 TableModel = (new javax.swing.table.DefaultTableModel (
 new Object [][] {

 },
 new String [] {
 "CUSTOMER NAME", "REVIEW"
 }
) {
 Class[] types = new Class [] {
 java.lang.String.class,java.lang.String.class
 };

 public Class getColumnClass (int columnIndex) {
 return types [columnIndex];
 }
 });
 jTable1.setModel(TableModel);
 jScrollPane1.setViewportView(jTable1);

 getContentPane().add(jScrollPane1, new
org.netbeans.lib.awtextra.AbsoluteConstraints(0, 60, 400, 100));

 jButton1.setText("Submit Customer Review");
 jButton1.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent evt) {
 jButton1ActionPerformed(evt);
 }
 });

 getContentPane().add(jButton1, new
org.netbeans.lib.awtextra.AbsoluteConstraints(100, 250, 190, -1));

 customerNameLabel.setText("Customer Name");
 getContentPane().add(customerNameLabel, new
org.netbeans.lib.awtextra.AbsoluteConstraints(40, 170, -1, -1));

 getContentPane().add(customerNameField, new
org.netbeans.lib.awtextra.AbsoluteConstraints(153, 170, 170, -1));

 reviewLabel.setText("Review");
Appendix A DiningGuide Source Files 131

 getContentPane().add(reviewLabel, new
org.netbeans.lib.awtextra.AbsoluteConstraints(40, 200, 80, -1));

 getContentPane().add(reviewField, new
org.netbeans.lib.awtextra.AbsoluteConstraints(153, 200, 170, 20));

 jLabel1.setText("All Customer Review By Restaurant Name");
 getContentPane().add(jLabel1, new
org.netbeans.lib.awtextra.AbsoluteConstraints(80, 10, 240, -1));

 pack();
 }//GEN-END:initComponents

 private void jButton1ActionPerformed(java.awt.event.ActionEvent evt)
{//GEN-FIRST:event_jButton1ActionPerformed

 try {
 DiningGuideWebServiceClientProxy reviewCP = new
DiningGuideWebServiceClientProxy();
 reviewCP.createCustomerreview(RestaurantName,
customerNameField.getText(),reviewField.getText());
 }
 catch (Exception ex) {
 System.err.println("Caught an exception.");
 ex.printStackTrace();
 }

 refreshView();
 }//GEN-LAST:event_jButton1ActionPerformed
 void refreshView() {
 try{
 while(TableModel.getRowCount()>0) {
 TableModel.removeRow(0);
 }
 putDataToTable(RestaurantName);
 repaint();
 }
 catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 /** Exit the Application */
 private void exitForm(java.awt.event.WindowEvent evt)
{//GEN-FIRST:event_exitForm
 System.exit(0);
 }//GEN-LAST:event_exitForm
 public void putDataToTable(java.lang.String restaurantname) {
 RestaurantName = restaurantname;

java.util.Vector customerList =getCustomerReviewByName(restaurantname);
132 Forte for Java 4, Enterprise Edition Tutorial • June 2002

 Iterator j=customerList.iterator();
 while (j.hasNext()) {
 CustomerreviewDetail ci = (CustomerreviewDetail)j.next();
 String[] str = {ci.getCustomername(),ci.getReview()

 };
 TableModel.addRow(str);
 }
 }
 private Vector getCustomerReviewByName(java.lang.String restaurantname) {
 Vector custList = new Vector();

 try {
 DiningGuideWebServiceClientProxy custCP = new
DiningGuideWebServiceClientProxy();
 custList =
(java.util.Vector)custCP.getCustomerreviewsByRestaurant(restaurantname);
 }
 catch (Exception ex) {
 System.err.println("Caught an exception.");
 ex.printStackTrace();
 }
 return custList;
 }
 /**
 * @param args the command line arguments
 */
 public static void main(String args[]) {
 new CustomerReviewTable().show();
 }

 // Variables declaration - do not modify//GEN-BEGIN:variables
 private javax.swing.JLabel reviewLabel;
 private javax.swing.JButton jButton1;
 private javax.swing.JScrollPane jScrollPane1;
 private javax.swing.JTextField customerNameField;
 private javax.swing.JTable jTable1;
 private javax.swing.JLabel customerNameLabel;
 private javax.swing.JLabel jLabel1;
 private javax.swing.JTextField reviewField;
 // End of variables declaration//GEN-END:variables
 private DefaultTableModel TableModel;
 private java.lang.String RestaurantName = null;
 //private java.util.Vector restaurantList = null;
}

Appendix A DiningGuide Source Files 133

134 Forte for Java 4, Enterprise Edition Tutorial • June 2002

APPENDIX B

DiningGuide Database Script

This PointBase database script for the DiningGuide tutorial is as follows:

drop table CustomerReview;
drop table Restaurant;

create table Restaurant(
restaurantNamevarchar(80),
cuisine varchar(25),
neighborhoodvarchar(25),
address varchar(30),
phone varchar(12),
descriptionvarchar(200),
rating tinyint,

constraint pk_Restaurant primary key(restaurantName));

create table CustomerReview(
restaurantNamevarchar(80) not null references Restaurant(restaurantName),
customerName varchar(25),
review varchar(200),

constraint pk_CustomerReview primary key(customerName, restaurantName));

insert into Restaurant (restaurantName, cuisine, neighborhood, address, phone,
description, rating) values ('French Lemon','Mediterranean','Rockridge', '1200
College Avenue', '510 888 8888', 'Very nice spot.', 5);
insert into Restaurant (restaurantName, cuisine, neighborhood, address, phone,
description, rating) values
('Bay Fox','Mediterranean','Piedmont', '1200 Piedmont Avenue', '510 888 8888',
'Excellent.', 5);

insert into CustomerReview (restaurantName, customerName, review) values
('French Lemon','Fred', 'Nice flowers.');
insert into Customerreview (restaurantname, customername, review) values
('French Lemon','Ralph', 'Excellent service.');
135

136 Forte for Java 4, Enterprise Edition Tutorial • June 2002

Index
A
accessor methods, exposing to the user, 42

Add Business Method menu item, 42

Add Constructor menu item, 45

Add Create Method menu item, 37

Add Finder Method menu item, 40

Add Module menu item, 86

B
beans directory, 6

bin directory, 6

business methods

Customerreview
getCustomerreviewDetail , 47

getReview , 43

DiningGuideManager
createCustomerreview , 66, 75

getAllRestaurants , 62, 75

getCustomerreviewDetail , 68, 75

getCustomerreviewsByRestaurant , 64,

75

getRestaurantDetail , 68, 76

Restaurant
getRating , 42, 56

getRestaurantDetail , 47

Restaurant.getRestaurantDetail , 30

business methods, Swing client

CustomerReviewTable
getCustomerReviewByName , 105

jButton1ActionPerformed , 107

putDataToTable , 105, 106, 108

refreshView , 107, 109

RestaurantTable
getAllRestaurants , 103

jButton1ActionPerformed , 104, 106

putDataToTable , 103

C
client proxy, 80

client proxy methods

createCustomerreview , 107

getAllRestaurants , 92, 103

getCustomerreviewsByRestaurant , 89,

105

constructors

CustomerreviewDetail , 46

RestaurantDetail , 45

create methods

Customerreview.create , 38, 54

DiningGuideManager.create , 60 to 62, 74

JNDI lookup code in, 61

Restaurant.create , 37, 55

Create New EJB Test Application menu item, 48, 71

Creating a web service, 23

creating a web service, 81 to 84

Customerreview entity bean

create method, creating, 38

creating, 32 to 43

getReview method, creating, 43

testing, 57
Index 137

CustomerReview table, description, 9

Customerreview_TestApp , 57

CustomerReviewTable
creating, 98

displayed, 16, 101

D
databases

PointBase home directory, 6

supported versions, 2

Deploy menu item, 87

detail classes

creating, 44 to 47

description, 22, 29

DiningGuide application

application scenarios, 14

architecture, 18

creating the database tables, 8 to 11

deploying, 24, 87

EJB tier, 27 to 31

functional description, 13

functional specs, 15

limitations, 25

requirements, 2

Swing client, adding to the application, 97 to 98

Swing client, examining, 102 to 109

Swing client, executing, 99

user’s view, 15

zipped source files to download, 1

DiningGuide Swing client

executing, 15

generated from web services, 88

installing and using, 24

DiningGuideApp , 88

DiningGuideManager session bean

create method, coding, 60 to 62

createCustomerreview method, 58, 66 to 67,

75, 90

creating, 59

getAllRestaurants method, 62 to 63, 75

getCustomerreviewDetail method, 68, 75

getCustomerreviewsByRestaurant
method, 64 to 65, 75

getRestaurantDetail method, 68, 76

testing, 74 to 76

DiningGuideManager_TestApp
bean methods, testing, 74 to 76

creating, 71 to 73

DiningGuideWebService , 82

docs directory, 6

E
EJB Builder

entity beans, creating, 32 to 36

local or remote interfaces, 32, 59

session beans, creating, 59 to 60

using, 21

EJB QL

using in finder methods, 40

viewing SQL generated from, 52

EJB tier overview, 20, 27 to 31

entity beans

adding to an EJB module, 71

business methods, creating, 42

business methods, testing, 56

create methods, creating, 37

create methods, testing, 53

creating, 32 to 36

finder methods, creating, 40

finder methods, testing, 56

local or remote interfaces, 32

primary key class, 36

testing, 53 to 57

validating, 42

example applications

location in IDE, 7

StockApp and UDDI registry, 24

where to download, xvi

examples directory, 6

F
ffjuser40ee , UNIX default user settings file, 5

finder methods

Customerreview.findByRestaurantName ,

40, 56

Restaurant.findAll , 30, 40, 56

testing, 56
Index 138 Forte for Java 4, Enterprise Edition Tutorial • June 2002

Forte for Java IDE

command-line switches, 4

descriptions of subdirectories, 6

requirements, 2

starting on Solaris, Linux, and other UNIX

software, 3

starting on Windows, 3

G
Generate Client Proxy menu item, 95

Generate/Compile Java File menu item, 84

generated runtime classes, 80

generated web service, 80

I
ide.log file, location, 6

interfaces, local or remote

for entity beans, 32

for session beans, 59

iPlanet directory, 6

J
J2EE applications

creating, 85

deploying, 87

DiningGuideApp , 85

J2EE Reference Implementation (RI)

properties on entity beans, 51, 72

required version, 2

setting as default application server, 7

stopping, 101

j2sdkee1.3.1 directory, 6

Javadoc technology

directory, 6

using in the IDE, xvi

JNDI lookup code, 61

jwsdp directory, 6

L
lib directory, 6

M
modules directory, 6

Mount Filesystem menu item, 32

N
Netscape, supported version, 2

New CMP Entity EJB menu item, 33

New EJB Test Application menu item, 48

New J2EE Application menu item, 85

New Java Bean menu item, 44

New Web Service menu item, 82

O
Overview of tasks, 21 to 24

P
parameters

changing order of, 54

order in test client, 54

PointBase software

home directory, 6

installing a database table, 9

supported version, 2

R
reating a web service client, 85

Reference Implementation. See J2EE Reference

Implementation

Restaurant entity bean

create method, 37, 55

creating, 32 to 43

findall method, 30

getRating method, 42, 57

getRestaurantDetail method, 30

Restaurant table, description, 8

Restaurant_TestApp
bean methods, testing, 53 to 57

creating, 48 to 53
Index 139

RestaurantTable
creating, 98

displayed, 15, 100

runide.exe or runidew.exe . See Forte for Java,

starting the IDE on Windows

runide.sh . See Forte for Java IDE, starting on

Solaris

S
sampledir directory, 7

session beans

business methods, creating, 62 to 65

create method, modifying, 60

create method, testing, 74

creating, 59 to 70

EJB references, adding, 69 to 70

local or remote interfaces, 59

testing, 71 to 76

validating, 69

sources directory, 6

Swing client

adding to the DiningGuide application, 97 to 98

editing limitations, 98

examining the code, 102 to 109

executing, 100

system directory, 6

T
test application facility

adding entity beans to the EJB module, 71

entity beans, testing, 53 to 58

session bean, testing, 71 to 76

test client, creating, 48 to 53, 71 to 73

test client, using, 53 to 58, 74 to 76

using, 22

web service, testing, 84 to 93

test applications

Customerreview_TestApp , 57

DiningGuideApp , 85

DiningGuideManager_TestApp , 71

Restaurant_TestApp , 48

testing enterprise beans

business methods, testing, 56

create method, testing, 54

finder methods, testing, 56

results in IDE’s output window, 53, 73, 87

results in J2EE command window, 53, 73, 87

test client page, 54, 74

Tomcat web server

setting as default web server, 7

supported version, 2

tomcat401 directory, 6

U
user settings directory

specifying at initial launch, 5

specifying with a command-line switch, 5

UNIX default, 5

Using the test application facility, 22

V
Validate EJB menu item, 42, 69

W
web browsers, supported versions, 2

web servers, supported versions, 2

web service

creating, 81 to 84

creating a client, 94

description, 79 to 81

exposing class types underlying collection

types, 67 to 69

generating a client proxy, 94, 95

generating WSDL, 93

sharing with other developers, 93 to 95

testing, 84 to 93

Web Service Descriptive Language (WSDL),

generating, 93
Index 140 Forte for Java 4, Enterprise Edition Tutorial • June 2002

	Forte™ for Java™ 4, Enterprise Edition Tutorial
	Contents
	Figures
	Tables
	Before You Begin
	Getting Started
	Software Requirements for the Tutorial
	What You Need to Run the Forte for Java�4 IDE
	What You Need to Create and Run the Tutorial

	Starting the Forte for Java�4 IDE
	Starting the IDE on Solaris, UNIX, and Linux Environments
	Starting the IDE on Microsoft Windows
	Modifying the Session With Command-Line Switches
	Specifying Your User Settings Directory

	Understanding the Forte for Java�4 Directory Structure
	Verifying the Correct Default Application Server and Web Server
	Creating the Tutorial Database Tables

	Introduction to the Tutorial
	Functionality of the Tutorial Application
	Application Scenarios
	Application Functional Specification

	User’s View of the Tutorial Application
	Architecture of the Tutorial Application
	Application Elements
	EJB Tier Details

	Overview of Tasks for Creating the Tutorial Application
	Creating the EJB Components
	Using the EJB Builder
	Creating the Detail Classes
	Using the Test Application Facility

	Creating the Tutorial’s Web Service
	Creating a Web Service
	Creating a Test Client for the Tutorial
	Deploying the Web Service and Creating a Test Client
	Testing the Web Service
	Making a Web Service Available to Other Developers

	Installing and Using the Provided Client

	End Comments

	Building the EJB Tier of the DiningGuide Application
	Overview of the Tutorial’s EJB Tier
	The Entity Beans
	The Session Bean
	The Detail Classes

	Summary of Steps
	Creating Entity Beans With the EJB Builder
	Creating the Restaurant Entity Bean
	Creating the Customerreview Entity Bean
	Creating Create Methods for CMP Entity Beans
	Creating the Restaurant Bean’s Create Method
	Creating the Customerreview Bean’s Create Method

	Creating Finder Methods on Entity Beans
	Creating the Restaurant Bean’s findAll Method
	Creating the Customerreview Bean’s findByRestaurantName Method

	Creating Business Methods for Testing Purposes
	Creating the Restaurant Bean’s getRating Method
	Creating the Customerreview Bean’s getReview Method

	Creating Detail Classes to View Entity Bean Data
	Creating the Detail Classes
	Creating the Detail Class Properties and Their Accessor Methods
	Creating the Detail Class Constructors
	Creating Business Methods on the Entity Beans to Fetch the Detail Classes

	Testing the Entity Beans
	Creating a Test Client for an Entity Bean
	Providing the RI Plugin With PointBase Information
	Deploying the Test Application
	Using the Test Client to Test the Entity Bean
	Checking the Additions to the Database

	Creating a Session Bean With the EJB Builder
	Coding a Session Bean’s Create Method
	Creating Business Methods to Get the Detail Data
	Creating the getAllRestaurants Method
	Creating the getCustomerreviewsByRestaurant Method

	Creating a Business Method to Create a Customer Review Record
	Creating Business Methods That Return Detail Class Types
	Creating the getRestaurantDetail Method
	Creating the getCustomerreviewDetail Method

	Adding EJB References

	Testing the Session Bean
	Creating a Test Client for a Session Bean
	Providing the RI Plugin With PointBase Information
	Deploying the Test Application
	Using the Test Client to Test a Session Bean
	Checking the Additions to the Database

	Comments on Creating a Client

	Creating the DiningGuide Application’s Web Service
	Overview of the Tutorial’s Web Service
	The Web Service
	The Runtime Classes
	The Client Proxy Pages

	Creating the Tutorial’s Web Services Tier
	Creating the Web Service Module
	Specifying the Web Service’s SOAP RPC URL
	Generating the Web Service’s Runtime Classes

	Testing the Web Service
	Creating a Test Client and Test Application
	Specifying the Web Context Property
	Deploying the Test Application
	Using the Test Application to Test the Web Service

	Making Your Web Service Available to Other Developers
	Generating the WSDL File
	Generating a Client Proxy From the WSDL File

	Creating a Client for the Tutorial Application
	Creating the Client With the Provided Code
	Running the Tutorial Application
	Examining the Client Code
	Displaying Restaurant Data
	Displaying Customer Review Data for a Selected Restaurant
	Creating a New Customer Review Record

	DiningGuide Source Files
	RestaurantBean.java Source
	RestaurantDetail.java Source
	CustomerreviewBean.java Source
	CustomerreviewDetail.java Source
	DiningGuideManagerBean.java Source
	RestaurantTable.java Source
	CustomerReviewTable.java Source

	DiningGuide Database Script
	Index

