
DEA2e.book Page 1 Friday, March 8, 2002 12:31 AM
Designing Enterprise Applications
with the J2EETM Platform, Second Edition

DEA2e.book Page 2 Friday, March 8, 2002 12:31 AM
The Java™ Series
(AW to Provide Film)

DEA2e.book Page 3 Friday, March 8, 2002 12:31 AM
Designing Enterprise Applications
with the J2EETM Platform, Second Edition

Inderjeet Singh, Beth Stearns,
Mark Johnson, and the Enterprise Team

Boston • San Francisco • New York • Toronto • Montreal
London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

DEA2e.book Page 4 Friday, March 8, 2002 12:31 AM
Copyright © 2002 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, California 94303 U.S.A.
All rights reserved.

Sun Microsystems, Inc., has intellectual property rights relating to implementations of the technology
described in this publication. In particular, and without limitation, these intellectual property rights
may include one or more U.S. patents, foreign patents, or pending applications. Sun, Sun Microsys-
tems, the Sun Logo, Java Embedded Server, Java, Jini, Solaris, Forte, JDK, PersonalJava, J2ME, Java-
Beans, EJB, and JavaMail are trademarks or registered trademarks of Sun Microsystems, Inc., in the
United States and other countries. UNIX is a registered trademark in the United States and other coun-
tries, exclusively licensed through X/Open Company, Ltd.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHI-
CAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN;
THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION.
SUN MICROSYSTEMS, INC., MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE
PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY
TIME.

The publisher offers discounts on this book when ordered in quantity for special sales. For more infor-
mation, please contact:

Pearson Education Corporate Sales Division
One Lake Street
Upper Saddle River, NJ 07458
(800) 382-3419
corpsales@pearsontechgroup.com

Visit Addison-Wesley on the Web: www.aw.com/cseng/

Library of Congress Control Number: 2002102513

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or other-
wise, without the prior consent of the publisher. Printed in the United States of America. Published
simultaneously in Canada.

ISBN 0-201-78790-3
Text printed on recycled paper
1 2 3 4 5 6 7 8 9 10—CRS—0605040302
First printing, March 2002

Contents

DEA2e.book Page v Friday, March 8, 2002 12:31 AM
Foreword .xiii

Preface .xv

About the Authors ..xix

1 Introduction .1
1.1 Challenges of Enterprise Application Development. 2

1.1.1 Programming Productivity . 3
1.1.2 Integration with Existing Systems. 4
1.1.3 Freedom of Choice . 4
1.1.4 Response to Demand . 4
1.1.5 Maintaining Security . 5

1.2 The Platform for Enterprise Solutions . 5
1.2.1 J2EE Platform Overview. 6
1.2.2 J2EE Platform Benefits . 10

1.3 J2EE Application Scenarios . 14
1.3.1 Multitier Application Scenario . 16
1.3.2 Stand-Alone Client Scenario . 18
1.3.3 Web-Centric Application Scenario 19
1.3.4 Business-to-Business Scenario . 20

1.4 How This Book Is Organized . 21
1.5 Summary . 22
1.6 References and Resources. 23

2 J2EE Platform Technologies .25
2.1 Component Technologies . 25

2.1.1 Types of J2EE Clients . 26
2.1.2 Web Components . 27
2.1.3 Enterprise JavaBeans Components 28
2.1.4 Components, Containers, and Services 31

2.2 Platform Roles. 32
v

CONTENTSvi

DEA2e.book Page vi Friday, March 8, 2002 12:31 AM
2.2.1 J2EE Product Provider . 33
2.2.2 Application Component Provider . 33
2.2.3 Application Assembler . 34
2.2.4 Deployer . 34
2.2.5 System Administrator . 34
2.2.6 Tool Provider. 34

2.3 Platform Services . 35
2.3.1 Naming Services . 35
2.3.2 Deployment Services. 36
2.3.3 Transaction Services . 37
2.3.4 Security Services . 40

2.4 Service Technologies . 42
2.4.1 JDBC API . 42
2.4.2 Java Transaction API and Service. 43
2.4.3 Java Naming and Directory Interface 43
2.4.4 J2EE Connector Architecture . 43
2.4.5 Java API for XML Processing Technology 44

2.5 Communication Technologies . 45
2.5.1 Internet Protocols . 45
2.5.2 Remote Method Invocation Protocols. 46
2.5.3 Object Management Group Protocols 46
2.5.4 Messaging Technologies . 47
2.5.5 Data Formats . 49

2.6 Summary . 50
2.7 References and Resources. 50

3 The Client Tier .51
3.1 Client Considerations . 51

3.1.1 Network Considerations . 52
3.1.2 Security Considerations. 52
3.1.3 Platform Considerations . 53

3.2 General Design Issues and Guidelines . 54
3.3 Design Issues and Guidelines for Browser Clients. 54

3.3.1 Presenting the User Interface . 55
3.3.2 Validating User Inputs . 56
3.3.3 Communicating with the Server . 58
3.3.4 Managing Conversational State . 59

3.4 Design Issues and Guidelines for Java Clients 60
3.4.1 Presenting the User Interface . 61

CONTENTS vii

DEA2e.book Page vii Friday, March 8, 2002 12:31 AM
3.4.2 Validating User Inputs. 64
3.4.3 Communicating with the Server . 65
3.4.4 Managing Conversational State. 69

3.5 Summary . 72
3.6 References and Resources. 73

4 The Web Tier. .75
4.1 The Purpose of the Web Tier . 75
4.2 Web-Tier Technologies. 76

4.2.1 Traditional Web-Tier Technologies 76
4.2.2 Web-Tier Technologies in the J2EE Platform. 78
4.2.3 The Web Container . 78
4.2.4 Java Servlets . 79
4.2.5 JavaServer Pages (JSP) Technology 80
4.2.6 Web-Tier Technology Guidelines . 82

4.3 Web-Tier Application Structure . 91
4.4 Web-Tier Application Framework Design . 94

4.4.1 Structuring the Web Tier . 96
4.4.2 Web-Tier MVC Controller Design 98
4.4.3 Web-Tier MVC View Design . 110
4.4.4 Web-Tier MVC Model Design . 113
4.4.5 Web Application Frameworks. 114
4.4.6 Separating Business Logic from Presentation. 115
4.4.7 Web-Tier State. 116
4.4.8 Distributable Web Applications . 123

4.5 Summary . 126
4.6 References and Resources. 127

5 The Enterprise JavaBeans Tier. .129
5.1 Business Logic and Business Objects . 130

5.1.1 Common Requirements of Business Objects 131
5.2 Enterprise Beans as J2EE Business Objects 134

5.2.1 Enterprise Beans and EJB Containers 136
5.3 Remote and Local Client Views . 140

5.3.1 Guidelines for Using Local or Remote Client Views 141
5.3.2 Entity Beans and Local Client Views 142

5.4 Entity Beans . 142
5.4.1 Guidelines for Using Entity Beans 143
5.4.2 Entity Bean Persistence . 144

CONTENTSviii

DEA2e.book Page viii Friday, March 8, 2002 12:31 AM
5.4.3 When to Use Bean-Managed Persistence 149
5.5 Session Beans . 149

5.5.1 Stateful Session Beans . 150
5.5.2 Stateless Session Beans. 151

5.6 Message-Driven Beans . 153
5.6.1 Uses of Message-Driven Beans. 154
5.6.2 Example: Invoice Message-Driven Bean 155

5.7 Design Guidelines. 156
5.7.1 Remote versus Local Client Access for Entity Beans. . . . 157
5.7.2 Session Beans as a Facade to Entity Beans. 157
5.7.3 Fine-Grained versus Coarse-Grained Object Access 158
5.7.4 Master-Detail Modeling Using Enterprise Beans 160
5.7.5 Data Access Objects . 160
5.7.6 Implementing an Entity Bean without a Create Method. . 163
5.7.7 Representing References to Entity Beans 163

5.8 Portability Guidelines . 164
5.8.1 Typecast Remote References . 165
5.8.2 Mark Non-Serializable Fields Transient 165
5.8.3 Bean-Managed Persistence and Portability. 166

5.9 Summary . 168
5.10 References and Resources. 170

6 Integrating with the Enterprise Information System Tier171
6.1 Integration Scenarios . 172

6.1.1 An Internet E-Store Application . 172
6.1.2 An Intranet Human Resources Application 174
6.1.3 A Distributed Purchasing Application 174
6.1.4 An Order Fulfillment Application. 176

6.2 J2EE Integration Technologies . 176
6.2.1 J2EE Connector Architecture . 177
6.2.2 Java Message Service API . 179
6.2.3 JDBC and RDBMS Access . 180

6.3 Application Integration Design Approaches. 181
6.3.1 Synchronous Integration . 182
6.3.2 Asynchronous Integration . 183
6.3.3 Comparing Approaches. 185
6.3.4 Data Integration. 185

6.4 Developing an Integration Layer . 186
6.4.1 Programming Access to Data and Functions 187

CONTENTS ix

DEA2e.book Page ix Friday, March 8, 2002 12:31 AM
6.4.2 Using Tools for EIS Integration . 187
6.4.3 Developing EIS Access Objects . 188
6.4.4 Guidelines for Connection Management. 193
6.4.5 Security Guidelines . 196

6.5 Summary . 199
6.6 References and Resources. 200

7 Packaging and Deployment .201
7.1 Packaging Components. 201
7.2 Roles and Tasks . 203

7.2.1 Application Component Provider Tasks 204
7.2.2 Application Assembler Tasks . 206
7.2.3 Deployer Tasks . 206

7.3 Packaging J2EE Applications . 207
7.3.1 EJB Modules . 210
7.3.2 EJB Module Packaging Guidelines 210
7.3.3 Web Modules. 214
7.3.4 Packaging Components into Web Modules 215
7.3.5 Application Client Modules . 222
7.3.6 Resource Adapter Modules . 222

7.4 Deployment Descriptors . 223
7.4.1 J2EE Naming Environment. 223
7.4.2 Specifying Deployment Descriptor Elements 225
7.4.3 Naming Convention Recommendations 239

7.5 Deployment Tools. 242
7.5.1 Deployment Tool Actions . 242
7.5.2 Deployment Tool Requirements . 244

7.6 Summary . 249
7.7 References and Resources. 250

8 Transaction Management. .251
8.1 Transactional Concepts . 251

8.1.1 ACID Transaction Properties . 252
8.1.2 Transaction Participants . 253
8.1.3 Transaction Demarcation. 253
8.1.4 Distributed Transactions . 253
8.1.5 Two-Phase Commit Protocol . 255

8.2 J2EE Platform Transactions . 256
8.2.1 Accessing Multiple Resources within a Transaction. 256
8.2.2 Transactions across Servers. 258

CONTENTSx

DEA2e.book Page x Friday, March 8, 2002 12:31 AM
8.3 J2EE Transaction Technologies . 259
8.4 Client Tier Transactions . 260
8.5 Web Tier Transaction Guidelines . 261
8.6 Enterprise JavaBeans Tier Transactions . 262

8.6.1 Bean-Managed Transaction Demarcation 263
8.6.2 Container-Managed Transaction Demarcation 264
8.6.3 Transaction Attributes . 264
8.6.4 Enterprise JavaBeans Tier Transaction Guidelines. 266

8.7 EIS Tier Transactions . 268
8.7.1 JTA Transactions. 268
8.7.2 Resource Manager Local Transactions 269
8.7.3 EIS Tier Transaction Guidelines . 269
8.7.4 Compensating Transactions . 269
8.7.5 Isolation Level. 272
8.7.6 Performance with Multiple Resource Managers 273

8.8 J2EE Resource Manager Types . 273
8.8.1 JDBC Databases . 273
8.8.2 JMS Providers . 274
8.8.3 J2EE Connector Architecture . 274

8.9 Summary . 276
8.10 References and Resources. 277

9 Security .279
9.1 Security Threats and Mechanisms . 279
9.2 Authentication. 280

9.2.1 Protection Domains . 281
9.2.2 Authentication Mechanisms . 284
9.2.3 Authentication Call Patterns . 292
9.2.4 Exposing Authentication Boundaries with References . . . 293

9.3 Authorization . 293
9.3.1 Declarative Authorization . 294
9.3.2 Programmatic Authorization . 295
9.3.3 Declarative versus Programmatic Authorization 296
9.3.4 Isolation. 296
9.3.5 Affects of Identity Selection . 297
9.3.6 Encapsulation for Access Control 297
9.3.7 Controlling Access to J2EE Resources 298
9.3.8 Example. 302

9.4 Protecting Messages . 304

CONTENTS xi

DEA2e.book Page xi Friday, March 8, 2002 12:31 AM
9.4.1 Integrity Mechanisms . 304
9.4.2 Confidentiality Mechanisms . 305
9.4.3 Identifying Sensitive Components 305
9.4.4 Ensuring Confidentiality of Web Resources 306

9.5 Auditing . 307
9.6 Summary . 308
9.7 References and Resources. 309

10 J2EE Internationalization and Localization 311
10.1 Internationalization Concepts and Terminology. 312

10.1.1 Internationalization, Localization, and Locale 312
10.1.2 Character Sets . 313
10.1.3 Encodings . 314

10.2 Using J2SE Internationalization APIs in J2EE Applications 316
10.2.1 Resource Bundles . 316
10.2.2 Message Formatting . 319
10.2.3 Date Formatting. 320
10.2.4 Collation . 320

10.3 Web Tier Internationalization . 321
10.3.1 Tracking Locales and Encodings. 321
10.3.2 Presentation Component Design . 325
10.3.3 Internationalizing and Localizing JSP Pages 327

10.4 EIS Tier Internationalization. 332
10.4.1 Persistent Localized Data . 332
10.4.2 Internationalizing Database Schema 334

10.5 Internationalized Application Design . 336
10.6 Internationalizing Applications with XML. 337

10.6.1 Generating Localized Dynamic Content with XSLT 337
10.6.2 Communicating Locale within an Application 338
10.6.3 Communicating Locale among Applications 338

10.7 Localizing Error and Logging Messages . 341
10.7.1 Client Messages and Application Exceptions 341
10.7.2 System Exceptions and Message Logging 344

10.8 Summary . 345
10.9 References and Resources. 345

11 Architecture of the Sample Application .347
11.1 J2EE Architecture Approaches . 348

11.1.1 Model-View-Controller Architecture 348

CONTENTSxii

DEA2e.book Page xii Friday, March 8, 2002 12:31 AM
11.1.2 J2EE Design Patterns . 350
11.2 Sample Application Overview . 352
11.3 Designing the Sample Application . 353

11.3.1 Choosing Application Tiers . 355
11.3.2 Choosing Local or Distributed Architecture 357

11.4 Architecture of the Sample Application . 359
11.4.1 Application Web Site Architecture 360
11.4.2 Fulfillment Center Architecture . 375

11.5 Summary . 382
11.6 References and Resources. 383

Afterword .385

Glossary .387

Index .405

DEA2e.book Page xiii Friday, March 8, 2002 12:31 AM
Foreword
YOU’RE holding one part of a truly stellar phenomenon in the computing indus-
try: the Java 2 Platform, Enterprise Edition. This book is a key piece of a visionary
effort that began more than two years ago with the introduction of the J2EE plat-
form. In that time, the J2EE engineering team has defined a new ecosystem for net-
worked computing and taught the world a new way to develop distributed
applications.

This team has changed the computing world on many levels. They’ve rein-
forced the core values of Java technology: portability, scalability, security, and
community. They’ve redefined the model for developing big, industrial-strength
enterprise applications. They’ve invented new licensing models, driven a new
compatibility model, and invigorated a new adoption model. Through the Java
Community Process, they’ve taught intense competitors that working together—
and building smarter—can be the key to successfully growing a marketplace that
offers more for everyone.

With the release of the J2EE 1.3 platform, the momentum continues. Six
months after the initial release of the J2EE 1.3 platform, the introduction of com-
patible products is running 56% over the rate for the previous version.

Part of the reason for this phenomenal uptake is, of course, the range of new
features in the J2EE 1.3 platform. These include improved container-managed
persistence, the new EJB Query Language, message-driven EJBs, support for the
J2EE Connector architecture, as well as enhancements such as servlet filters and
improved JSP tag library support. Our J2EE licensees have been eager to intro-
duce these features to the platform, and J2EE developers have been anxious to
begin taking advantage of them.

In this regard, the Java BluePrints team truly stands alone—first out of the box
with real solutions and tested guidelines to help you use these features to best
advantage. Because of the quality of their efforts, Java BluePrints has also been a
phenomenal success during the past two years. More than a half million develop-
ers have downloaded the BluePrints book and demo application code. A dozen
application server vendors now redistribute J2EE BluePrints with their J2EE com-
patible products. Four vendors have even introduced commercial products based
on J2EE BluePrints. Elsewhere, BluePrints is recognized, written about, and
praised by every major Java technology-focused publication. A number of techni-
xiii

FOREWORDxiv

DEA2e.book Page xiv Friday, March 8, 2002 12:31 AM
cal institutes even use BluePrints to train the next generation of Java application
developers.

The Java software organization focuses on efforts like these because we see
the net effect: a huge win for software developers everywhere, at all levels of the
software development food chain. By fostering Java technology standards like the
J2EE platform and providing content like BluePrints, we’re working to ensure that
the Java software development community continues to grow, flourish, and
mature.

This book is central to that effort. The enterprise team who brought it together
are thought leaders who can help you build the skill sets you need to be ready for
new opportunities. Like you, they stay awake nights thinking about how to build
applications that are more flexible, more portable, higher performance, and easier
to develop. They’re tuned into solving the problems that you face day to day.
Working alongside the folks who define and implement the technologies they are
using, they explore the “what-if” scenarios that this rich platform suggests and sift
through design options to come up with clear guidelines for the what and how of
software design on the J2EE platform.

The future holds great things for Java technology and the BluePrints program.
During the coming months, our Java Web Services Developer Pack, The Java Web
Services Tutorial, and Java BluePrints for Web Services will help developers build
applications that take advantage of the services-on-demand promised by the Sun
ONE architecture. Building on what’s already available, these offerings will
enhance the phenomenal success of the J2EE platform and the Java application
marketplace.

By taking advantage of the gold mine of advice you’ll find in this book, you
too can be part of the phenomenal success that is the J2EE platform.

Rich Green
Vice President and General Manager
Java and XML Software, Sun Microsystems
Santa Clara, California
February, 2002

DEA2e.book Page xv Friday, March 8, 2002 12:31 AM
Preface
THIS book, now in its second edition, describes standard approaches to designing
multitier enterprise applications with the JavaTM 2 Platform, Enterprise Edition.
This book, and the accompanying Java Pet Store sample application, are part of the
successful Java BluePrints program created by Sun Microsystems with the introduc-
tion of the J2EE platform. This program has been used by thousands of application
architects, developers, and students to attain better understanding of the program-
ming model inherent in the J2EE platform.

This book and the Java BluePrints program don’t provide information on how to
use individual Java technologies to write applications—that’s the role of the com-
panion Java Tutorial program. Instead, Java BluePrints focuses on guidelines for
application architecture, such as distributing J2EE application functionality across
tiers and choosing among design options within each tier. This book assumes that
the reader already has basic knowledge of the J2EE platform. We recommend that
readers without this knowledge familiarize themselves with the J2EE Tutorial either
before or while reading this volume. See “Related Information” later in the Preface
for details.

This book describes the architecture and design principles employed in building
J2EE applications, and explores of the specific approach adopted by the sample
application. Striking a balance between specific details and broad principles is
never easy. The hope behind this effort is that the principles presented here are both
consistent with and a useful complement to the implementation provided by the
sample applications documented in this book.

This book is intended primarily for system architects and enterprise application
developers engaged in or considering a transition to the J2EE platform. It is also
useful for product vendors interested in developing applications consistent with the
J2EE standard.

Obtaining the Sample Application

You can download the Java Pet Store sample application, version 1.3, which is
described in this book, from:

http://java.sun.com/blueprints/code/
xv

PREFACExvi

DEA2e.book Page xvi Friday, March 8, 2002 12:31 AM
The sample application requires a J2EE v1.3-compliant platform on which to
run. You can download J2EE SDK TM, which is a freely available implementation of
that platform, from:

http://java.sun.com/j2ee/download.html

Related Information

Pointers to J2EE documentation can be found at:

http://java.sun.com/j2ee/docs.html

For information on how to use the J2EE SDK to construct multitier enterprise appli-
cations, refer to the J2EE Tutorial, available at:

http://java.sun.com/j2ee/tutorial/

The J2EE technologies cited in this book are described in their specifications:

• Java™ 2 Platform, Enterprise Edition Specification, Version 1.3 (J2EE spec-
ification). Available at <http://java.sun.com/j2ee/download.html>

• Java™ 2 Platform, Standard Edition Specification, Version 1.3 (J2SE specifi-
cation). Available at <http://java.sun.com/j2se/1.3/docs/>

• Java™ Servlet Specification, Version 2.3 (Servlet specification). Available at
<http://java.sun.com/products/servlet/>

• JavaServer Pages™ Specification, Version 1.2 (JSP specification). Available
at <http://java.sun.com/products/jsp/>

• Enterprise JavaBeans™Specification, Version 2.0 (EJB specification). Avail-
able at <http://java.sun.com/products/ejb/>

• Java™ API for XML Processing Specification, Version 1.1 (JAXP specifica-
tion). Available at <http://java.sun.com/xml/jaxp/>

• J2EE™ Connector Architecture Specification, Version 1.0 (Connector speci-
fication). Available at <http://java.sun.com/j2ee/connector/>

• JDBC™ API Specification, Version 2.0 (JDBC specification). Available at
<http://java.sun.com/products/jdbc/>

PREFACE xvii

DEA2e.book Page xvii Friday, March 8, 2002 12:31 AM
• JDBC™ Standard Extension API Specification, Version 2.0 (JDBC extension
specification). Available at <http://java.sun.com/products/jdbc/>

• Java™ Transaction API Specification, Version 1.0.1 (JTA specification).
Available at <http://java.sun.com/products/jta/>

• Java Naming and Directory Interface™ Specification, Version 1.2 (JNDI
specification). Available at <http://java.sun.com/products/jndi/>

• Java IDL. Available at <http://java.sun.com/j2se/1.3/docs/guide/idl/>

• RMI over IIOP. Available at <http://java.sun.com/products/rmi-iiop/>

• Java™ Message Service Specification, Version 1.0.2 (JMS specification).
Available at <http://java.sun.com/products/jms/>

• Java™ Authentication and Authorization Service Specification, Version 1.0
(JAAS specification). Available at <http://java.sun.com/products/jaas/>

• JavaMail™ API Specification, Version 1.2 (JavaMail specification).
Available at <http://java.sun.com/products/javamail/>

• JavaBeans™ Activation Framework Specification, Version 1.0.1 (JAF speci-
fication). Available at <http://java.sun.com/products/javabeans/glas-
gow/jaf.html>

Typographic Conventions

Table 0.1 describes the typographic conventions used in this book.

Table 0.1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; interface, class,
method, and deployment descriptor
element names; programming
language keywords

Edit the file Main.jsp.
How to retrieve a UserTransaction
object.
Specify the resource-ref element.

AaBbCc123 Variable name The files are named XYZfile.

AaBbCc123 Book titles, new words or terms, or
words to be emphasized

Read Chapter 6 in User’s Guide. These
are called class options. You must be root
to do this.

PREFACExviii

DEA2e.book Page xviii Friday, March 8, 2002 12:31 AM
Acknowledgments

This book is the result of many people’s efforts.
The authors listed for each chapter had primary responsibility for the content

provided there and also made significant contributions to other chapters. In addition,
Abhishek Chauhan, Vinita Khanna, and Stephanie Bodoff contributed significantly
to the chapters in the first edition of this book. Liz Blair was instrumental in devel-
oping the initial drafts of the EJB-tier chapter.

We are indebted to Thierry Violleau, Umit Yalcinalp, Kate Stout, Norbert Lin-
denberg, and Danny Coward for their comprehensive reviews and thoughtful com-
ments on many chapters. We would also like to thank Eduardo Pelegri-Llopart, Jon
Ellis, David Bowen, Monica Pawlan, Tim Lindholm, Tom Kast, Mark Hapner, Bill
Shannon, John Crupi, Sanjeev Krishnan, Stephanie Bodoff, Dale Green, Mark Roth,
Martin Flynn, Brian Beck, Andrey Dikanskiy, and Craig McClanahan for their
input.

Our special thanks go to our management, Larry Freeman, Cori Kaylor, Vivek
Nagar, and Jeff Jackson, for their whole-hearted support and commitment to the
BluePrints program and to this book in particular.

We would never have made it to the end of this project without the support of
Suzy Pelouch who did an excellent job at pulling together all the pieces.

The authors of the J2EE specifications and the developers of the reference
implementation provided useful input at various points during the development of
the J2EE programming model.

DEA2e.book Page xix Friday, March 8, 2002 12:31 AM
About the Authors
Authors listed in alphabetical order by first name:

BETH STEARNS is the principal partner of ComputerEase Publishing, a computer
consulting firm she founded in 1982. Her client list includes Sun Microsystems,
Inc., Silicon Graphics, Inc., Oracle Corporation, and Xerox Corporation. Among
her publications are the “Java Native Interface” chapter in The Java Tutorial Contin-
ued book in the Addison-Wesley Java Series, “The EJB Programming Guide” for
Inprise Corporation, and “Understanding EDT,” a guide to Digital Equipment Cor-
poration’s text editor. She co-authored with Vlada Matena the book, Applying
Enterprise JavaBeans: Component-Based Development for the J2EE Platform,
which is part of the Addison-Wesley Java Series. She is also a co-author with Rahul
Sharma and Tony Ng of another book in the Addison-Wesley Java Series, J2EE
Connector Architecture and Enterprise Application Integration.

GREG MURRAY is a member of the Java BluePrints team at Sun Microsystems.
He is a contributing author to the first edition of this book. Greg contributed to the
design of the Java Pet Store sample application with an emphasis on the Web tier.
Prior to working on the Java BluePrints team, Greg was a member of the Global
Products Engineering group of Sun Microsystems, where he developed internation-
alization tools.

INDERJEET SINGH is the lead architect on the Java BluePrints team at Sun Micro-
systems, where he investigates the best uses of J2EE technologies for enterprise
application design. Inderjeet has been involved with the Java BluePrints program
since its inception. He is a regular speaker on enterprise application design. In the
past, Inderjeet has also designed fault-tolerance software for large-scale distributed
telecommunications switching systems. Inderjeet holds an M.S. in computer science
from Washington University in Saint Louis, and a B.Tech. in computer science and
engineering from Indian Institute of Technology, Delhi.
xix

ABOUT THE AUTHORSxx

DEA2e.book Page xx Friday, March 8, 2002 12:31 AM
JIM INSCORE manages technical publications for the Java 2 Platform, Enterprise
Edition, in the Java Software Group of Sun Microsystems. His roles include over-
seeing developer documentation, such as the J2EE Tutorial and J2EE BluePrints,
providing developer content for the java.sun.com Web site. Jim serves as technical
editor on the Java Series, Enterprise Edition, from Addison-Wesley and is a co-
author, with Rick Cattel, of the Java Series book, J2EE Technology in Practice. Jim
has been involved with object-oriented and enterprise-related technologies for more
than 15 years, working with developer documentation and marketing programs for
organizations that include Oracle, Ingres, NeXT, Kaleida, and Macromedia. Prior to
that, he spent 10 years writing marketing communications materials for the techni-
cal marketplace.

LINDA DEMICHIEL is the specification lead of the Expert Group for the Enter-
prise JavaBeansTM specification, under the Java Community Process program, and a
Senior Staff Engineer in the J2EE platform group at Sun Microsystems. She has
over 15 years of industry experience in the areas of databases, distributed comput-
ing, and OO. She has a Ph.D. in computer science from Stanford University.

MARK JOHNSON is a software developer, trainer, writer, and speaker living in
Fort Collins, Colorado. He is President of Elucify Technical Communications, a
Colorado corporation dedicated to making accessible difficult or novel topics in
science and technology through clear explanation and example. He has been a col-
umnist at JavaWorld since 1997 and is a member of the National Association of
Science Writers. He is currently a consultant with the Java BluePrints group at Sun.
Mark completed a B. S. in computer and electrical engineering at Purdue University
in 1986, followed by two years of graduate work at Purdue, concentrating in signal
processing and computer systems.

NICHOLAS KASSEM is a Senior Staff Engineer with Sun Microsystems and has
influenced and had responsibility for a number of technologies and initiatives within
Java Software, including the Java Web Server, Java Embedded Server, the Servlet
API, JavaServer Pages, Java Message Queuing, and the J2EE programming model.
He is currently leading the Java API for XML Messaging (JAXM) initiative. Nicho-
las has more than twenty years of industry experience and has held senior engineer-
ing and management positions at Philips (Data Systems) and the Santa Cruz
Operation. He has had direct responsibility for a wide variety of engineering
projects, including the development of Data Communications Gateway Hardware
(DISOSS), Novell and Lan Manager protocol stacks, and an implementation of OSF

ABOUT THE AUTHORS xxi

DEA2e.book Page xxi Friday, March 8, 2002 12:31 AM
DCE on SCO UNIX. He is an engineering graduate of Birmingham University in
the United Kingdom.

RAHUL SHARMA is the lead architect and specification lead of J2EE Connector
Architecture 1.0 and JAX-RPC specifications. He works as an architect in the J2EE
platform group of Sun Microsystems, Inc. Rahul has also worked on exploring how
the Java platform can be used for building carrier-grade applications. Rahul has an
MBA from Haas School of Business, University of California at Berkeley, and a
B.E. in computer engineering from Delhi University.

RAY ORTIGAS is an engineer with the Java BluePrints group at Sun Microsys-
tems, where he works on wireless and enterprise applications using Java technology.
A former intern with the Java Tutorial, where he authored the “First Cup of Java”
trail, Ray earned his B.Sc. in computer science from the University of Toronto in
Canada.

RON MONZILLO is a Senior Staff Engineer at Sun Microsystems, where he is the
J2EE security specification lead. Ron was responsible for the design and standard-
ization of the EJB secure interoperability protocol, CSIv2. Prior to joining Sun, Ron
worked for the Open Group where he contributed to the evolution of the Distributed
Computing Environment. Ron has also worked for BBN, where he developed
Network Management systems, and as a Principal Investigator for the MITRE Cor-
poration where he researched fault-tolerant distributed database systems and multi-
processor architectures. Ron received an M.S. in computer science from the Univer-
sity of Connecticut and a B.S. in biology from Bates College.

SEAN BRYDON is a member of the Java BluePrints team at Sun Microsystems.
Sean contributed to the design of the Java Pet Store sample application with an
emphasis on the application and the tiers for EIS and the EJB component architec-
ture. In the past, Sean has worked on the JavaLoadTM team and has spent a summer
as an intern at SunLabs. Sean holds an M.S. in computer science from the Univer-
sity of California at Santa Barbara and also a B.S. in computer science from the Uni-
versity of California at Santa Barbara.

TONY NG is the technical lead of the J2EE SDK and Reference Implementation
at Sun Microsystems, Inc. Previously, he was the implementation lead of the J2EE
Connector Architecture. He is a contributing author to the first edition of Designing
Enterprise Applications with the Java 2 Platform, Enterprise Edition, and J2EE

ABOUT THE AUTHORSxxii

DEA2e.book Page xxii Friday, March 8, 2002 12:31 AM
Connector Architecture and Enterprise Application Integration in the Addison-
Wesley Java Series. Tony has an M.S. in electrical engineering and computer
science from Massachusetts Institute of Technology and a B.S. in computer
science from the University of Illinois, Urbana-Champaign.

VIJAY RAMACHANDRAN is a member of the technical staff at Sun Microsys-
tems, where he works as the Team Lead of the Java BluePrints team. His major con-
tributions include guidelines on best practices when developing business solutions
using enterprise beans. Before joining the BluePrints team, Vijay was a member of
the Enterprise Server Products Group of Sun Microsystems working on Sun’s enter-
prise server products line. Vijay holds an M.S. in computer science from Santa Clara
University, California, and a B.E. in electrical engineering from Madras University,
India.

DEA2e.book Page 1 Friday, March 8, 2002 12:31 AM
C H A P T E R 1

Introduction

by Jim Inscore and Nicholas Kassem

SINCE its introduction more than two years ago, the Java 2 Platform, Enterprise
Edition (J2EE), has rapidly established a new model for developing distributed
applications. This model is based on well-defined components that can automati-
cally take advantage of sophisticated platform services. These components can be
developed according to standard guidelines, combined into applications, deployed
on a variety of compatible server products, and reused for maximum programmer
productivity. This model is intended to both standardize and simplify the kind of
distributed applications required for today’s networked information economy. The
success of the J2EE platform is in large part due to the success of this model.

Today, all leading application server and enterprise information system
vendors have adopted the J2EE standard and introduced products based on the
J2EE platform specification. Application architects and developers have come to
rely on the J2EE standard to help them solve the various design challenges that
face them day to day.

While the fundamentals of the J2EE platform are relatively easy to describe,
mapping these features to architectural issues in the design of distributed applica-
tions requires deeper understanding and careful decision making. Although the
J2EE standard offers a simplified programming model compared to previous alter-
natives, the platform isn’t monolithic. Certain features require that architects and
developers weigh their options before making design decisions and be prepared to
re-think those decisions as they uncover new challenges. That, in turn, requires
some understanding of the design motivations behind the platform and of the
trade-offs involved in applying specific design features to a specific architectural
problem.
1

CHAPTER 1 INTRODUCTION2

DEA2e.book Page 2 Friday, March 8, 2002 12:31 AM
Different implementations of the J2EE platform may provide distinguishing
characteristics that improve their performance or development ease in particular
areas. However, the level of abstraction provided by the J2EE standard enables
common themes to be developed, explained, and explored and certain common
design guidelines to be developed. That’s what Java BluePrints is all about. It
answers questions like:

• What’s the best way to apply each type of J2EE component?

• Where does it make sense to use Java servlets and where to use JavaServer
Pages?

• What’s the best way to factor business logic between entity beans and session
beans?

• How do you choose between container-managed and bean-managed persis-
tence when using entity beans?

• What are the design and performance trade-offs between choosing a distribut-
ed architecture and one based on local interfaces?

• In this increasingly security-conscious world, how do you design distributed
applications to be accessible to users who need them and secure from unwant-
ed intrusion?

Before the remainder of this book takes you more deeply into these and other
details of J2EE application architectures, this chapter gives you a look at some of
the design motivations behind the J2EE platform. It describes the high-level bene-
fits of the J2EE platform and discusses ways that using it as the underlying archi-
tecture for distributed applications makes sense for a variety of application
requirements.

1.1 Challenges of Enterprise Application Development

Timing has always been a critical factor when organizations adopt new technolo-
gies, and the accelerated pace of the information-driven business model puts greater
emphasis on response times. Organizations need to be able to project enterprise
systems into various client channels, and to do so in a way that’s reliable, produc-
tive, and capable of sustaining frequent updates to both information and services.
The principal issue is how to keep up with today’s business challenges—whatever

CHALLENGES OF ENTERPRISE APPLICATION DEVELOPMENT 3

DEA2e.book Page 3 Friday, March 8, 2002 12:31 AM
they may be—while maintaining and leveraging the value of existing information
assets. In this environment, timeliness, productivity, security, and predictability are
all absolutely critical to building and maintaining momentum. A number of factors
can enhance or impede an organization’s ability to deliver custom enterprise appli-
cations quickly and to maximize their value over their lifetime.

1.1.1 Programming Productivity

The ability to develop and deploy applications is key to success in the information
economy. Applications must go quickly from prototype to production and must con-
tinue to evolve even after they are deployed.

Productivity is thus vital to responsive application development. Providing
application development teams with standard means to access the services
required by multitier applications and standard ways to support a variety of clients
can contribute to both responsiveness and flexibility.

The current divergence of technologies and programming models is a destabi-
lizing factor in Internet and other distributed computing applications. Traditional
Web technologies such as HTML and Common Gateway Interface (CGI) have
provided a mechanism for distributing dynamic content, while back-end systems
such as transaction processors and database management systems have provided
controlled access to the data to be presented and manipulated. These technologies
present a diversity of programming models: some based on well-defined stan-
dards; others on more ad-hoc standards; and others still on proprietary architec-
tures.

With no single application model, it can be difficult for teams to communicate
application requirements effectively and productively. As a result, architecting
applications becomes more complex. What’s more, the skill sets required to inte-
grate these technologies aren’t well organized for effective division of labor. For
example, CGI development requires coders to define both content and layout of a
dynamic Web page.

Another complicating factor in application development time is the choice of
clients. While many applications can be distributed to Web browser clients
through static or dynamically generated HTML, others may need to support a spe-
cific type of client or to support several types of clients simultaneously. The pro-
gramming model needs to support a variety of client configurations, with
minimum effect on basic application architecture and on the application’s core
business logic.

CHAPTER 1 INTRODUCTION4

DEA2e.book Page 4 Friday, March 8, 2002 12:31 AM
1.1.2 Integration with Existing Systems

Much of the data of value to organizations has been collected over the years by
existing enterprise information systems. Much of the programming investment
resides in applications on those same systems. The challenge for developers of
enterprise applications is how to reuse and commoditize these existing information
assets.

To achieve this goal, application developers need standard ways to access
middle-tier and back-end services such as database management systems and
transaction monitors. They also need systems that provide these services consis-
tently, so that new programming models or styles aren’t required as integration
expands to encompass various systems within an enterprise.

1.1.3 Freedom of Choice

Application development responsiveness requires the ability to mix and match solu-
tions to come up with the optimum configuration for the task at hand. Freedom of
choice in enterprise application development should extend from servers to tools to
components. The wide range of J2EE compatible solutions available today and in
the future ensures the maximum freedom of choice.

The availability of choices among server products gives an organization the
ability to select configurations tailored to their application requirements. It also
provides the ability to move quickly and easily from one configuration to another
as internal and external demand requires.

Access to the appropriate tools for the job is another important choice. Devel-
opment teams should be able to adopt new tools as new needs arise, including
tools from server vendors and third-party tool developers. What’s more, each
member of a development team should have access to tools that are most appro-
priate to their skill set and contribution.

Finally, developers should be able to choose from a ready market of off-the-
shelf application components to take advantage of external expertise and to
enhance development productivity.

1.1.4 Response to Demand

When designing large-scale distributed applications, both availability and scalability
are key considerations. The more easily and automatically that an application can
handle changes in use patterns and system configurations, the better. Systems that

THE PLATFORM FOR ENTERPRISE SOLUTIONS 5

DEA2e.book Page 5 Friday, March 8, 2002 12:31 AM
require any redesign, recoding, or redeployment to achieve either availability or
scalability will limit flexibility and diminish expected performance.

To scale effectively, systems need to be designed to handle multiple client
interactions with ease. They need mechanisms for efficient management of system
resources and services such as database connections and transactions. For highest
availability, they need access to features such as automatic load balancing and
failover, without any effort on the part of the application developer. Applications
should be able to run on any server configuration appropriate to anticipated client
volumes and to easily switch configurations when the need arises. Support for
clustered application deployment environments contributes to achieving many of
these goals.

1.1.5 Maintaining Security

More than ever, information systems security is on the minds of IT managers and
system architects. That’s because protecting information assets to maximize their
value can jeopardize that very value. Traditionally, IT departments have been able to
maintain a relatively high level of control over the environment of both servers and
clients. When information assets are exposed in less-protected environments, it
becomes increasingly important to maintain tight security over the most sensitive
assets, while allowing seemingly unencumbered access to others.

One of the difficulties in integrating disparate systems is providing a unified
security model. Single sign on across internal application and asset boundaries is
important to creating a positive user experience with the applications. Security
needs to be compatible with existing mechanisms. In cases where customers need
to access secure information, the mechanisms need to maintain high security (and
user confidence) while remaining as unobtrusive and transparent as possible.

1.2 The Platform for Enterprise Solutions

The J2EE platform represents a single standard for implementing and deploying
enterprise applications. During its first two years, the J2EE standard’s success has
transformed the marketplace for distributed computing products. This success is
largely due to the fact that the J2EE platform has been designed through an open
process, engaging a range of enterprise computing vendors to ensure that it meets
the widest possible range of enterprise application requirements. As a result, the
J2EE platform addresses the core issues that impede organizations’ efforts to main-

CHAPTER 1 INTRODUCTION6

DEA2e.book Page 6 Friday, March 8, 2002 12:31 AM
tain a competitive pace in the information economy. Organizations have recognized
this and quickly adopted the new platform standard.

1.2.1 J2EE Platform Overview

The J2EE platform is designed to provide server-side and client-side support for
developing distributed, multitier applications. Such applications are typically con-
figured as a client tier to provide the user interface, one or more middle-tier modules
that provide client services and business logic for an application, and back-end
enterprise information systems providing data management. Figure 1.1 illustrates
the various components and services that make up a typical J2EE environment.

Figure 1.1 J2EE Environment

1.2.1.1 Multitier Model

As illustrated, the J2EE platform provides a multitier distributed application model.
This means that the various parts of an application can run on different devices. The

THE PLATFORM FOR ENTERPRISE SOLUTIONS 7

DEA2e.book Page 7 Friday, March 8, 2002 12:31 AM
J2EE architecture defines a client tier, a middle tier (consisting of one or more sub-
tiers), and a back-end tier. The client tier supports a variety of client types, both
outside and inside of corporate firewalls. The middle tier supports client services
through Web containers in the Web tier and supports business logic component ser-
vices through Enterprise JavaBeansTM (EJBTM) containers in the EJB tier. On the back
end, the enterprise information systems in the EIS tier are accessible by way of stan-
dard APIs.

1.2.1.2 Container-Based Component Management

Central to the J2EE component-based development model is the notion of contain-
ers. Containers are standardized runtime environments that provide specific services
to components. Components can expect these services to be available on any J2EE
platform from any vendor. For example, all J2EE Web containers provide runtime
support for responding to client requests, performing request-time processing (such
as invoking JSP pages or servlet behavior), and returning results to the client. In
addition, they provide APIs to support user session management. All EJB containers
provide automated support for transaction and life cycle management of EJB com-
ponents, as well as bean lookup and other services. Containers also provide stan-
dardized access to enterprise information systems; for example, providing access to
relational data through the JDBC API.

In addition, containers provide a mechanism for selecting application behav-
iors at assembly or deployment time. Through the use of deployment descriptors
(XML files that specify component and container behavior), components can be
configured to a specific container’s environment when deployed, rather than in
component code. Features that can be configured at deployment time include
security checks, transaction control, and other management responsibilities.

While the J2EE specification defines the component containers that a platform
implementation must support, it doesn’t specify or restrict the containers’ configu-
rations. Thus, both container types can run on a single platform, Web containers
can live on one platform and EJB containers on another, or a J2EE platform can be
made up of multiple containers on multiple platforms.

1.2.1.3 Support for Client Components

The J2EE client tier provides support for a variety of client types, both within the
enterprise firewall and outside. Clients can be offered through Web browsers by
using plain HTML pages, HTML generated dynamically by JavaServer PagesTM

CHAPTER 1 INTRODUCTION8

DEA2e.book Page 8 Friday, March 8, 2002 12:31 AM
(JSPTM) technology, or Java applets. Clients can also be offered as stand-alone Java
language applications. J2EE clients are assumed to access the middle tier primarily
using Web standards, namely HTTP, HTML, and XML. Because of its flexible pro-
gramming model, the J2EE platform can support a number of simple application
models implemented primarily on the strengths of its Web tier component technolo-
gies.

To support more complex user interactions, it may be necessary to provide
functionality directly in the client tier. This functionality is typically implemented
as JavaBeansTM components that interact with the service in the middle tier via
servlets. Client-tier JavaBeans components would typically be provided by the
service as an applet that is downloaded automatically into a user’s browser. To
eliminate problems caused by old or non-standard versions of the Java Virtual
Machine in a user’s browser, the J2EE application model provides special support
for automatically downloading and installing the Java Plug-in. In addition, the
J2EE platform is flexible enough to support alternate client models easily, includ-
ing wireless phones and handheld devices that use programming models provided
by the Java 2 Platform, Micro Edition.

Client-tier beans can also be contained in a stand-alone application client
written in the Java programming language. In this case, the enterprise typically
would make the client available for users to download from a browser using Java
Web Start technology. Java Web Start technology makes application deployment
portable by providing browser-based download and installation mechanisms. With
both application and deployment portability, this ensures that users can always
access and work with the latest versions of stand-alone application clients.

If desired, non-Java clients such as Visual Basic programs can present J2EE
services to users. Since the service is presented by servlets in the middle tier to
first-tier clients using the standard HTTP protocol, it is easy to access it from
practically any program running on any operating system.

1.2.1.4 Support for Business Logic Components

While simple J2EE applications may be built largely in the client tier, business logic
is often implemented on the J2EE platform in the middle tier as Enterprise
JavaBeans components (also known as enterprise beans). Enterprise beans allow the
component or application developer to concentrate on the business logic while the
complexities of delivering a reliable, scalable service are handled by the EJB con-
tainer.

THE PLATFORM FOR ENTERPRISE SOLUTIONS 9

DEA2e.book Page 9 Friday, March 8, 2002 12:31 AM
In many ways, the J2EE platform and EJB architecture have complementary
goals. The EJB component model is the backbone of industrial-strength application
architectures in the J2EE programming model. The J2EE platform complements the
EJB specification by:

• Fully specifying the APIs that an enterprise bean developer can use to imple-
ment enterprise beans

• Defining the larger, distributed programming environment in which enterprise
beans are used as business logic components

1.2.1.5 Support for the J2EE Standard

The J2EE standard is defined through a set of related specifications. Key among
these are the J2EE specification, the Enterprise JavaBeans specification, the Java
Servlet specification, and the JavaServer Pages specification. Together, these specifi-
cations define the architecture described in this book. In addition to the specifica-
tions, several other technology deliverables support the J2EE standard, including the
J2EE Compatibility Test Suite, the J2EE reference implementation, and the J2EE
SDK.

The J2EE Compatibility Test Suite (CTS) helps maximize the portability of
applications by validating the specification compliance of a J2EE platform product.
This test suite begins where the basic Java Conformance Kit (JCK) leaves off. The
CTS tests conformance to the Java standard extension APIs that are not covered
by a JCK. In addition, it tests a J2EE platform’s ability to run standard end-to-end
applications.

The J2EE reference implementation, a complete implementation of the J2EE
standard provided by Sun Microsystems, represents an operational definition of the
J2EE platform. It is used by licensees as the “gold standard” to determine what their
product must do under a particular set of application circumstances. It is the stan-
dard platform for running the J2EE Compatibility Test Suite, and it can be used by
developers to verify the portability of an application. The J2EE reference implemen-
tation is available in both binary and source code form.

The J2EE SDK, based on the J2EE reference implementation binary, is pro-
vided freely to the developer community to help expedite developer adoption of
the J2EE standard. Although not a commercial product and not available for com-
mercial use, the J2EE SDK is useful for developing application demos and proto-
types, such as the Java Pet Store sample application described in this book. The
J2EE SDK also includes application verification and deployment tools to simplify

CHAPTER 1 INTRODUCTION10

DEA2e.book Page 10 Friday, March 8, 2002 12:31 AM
development, and the J2EE Tutorial, which provides step-by-step examples and
information that developers need to begin working with the platform.

Another word on J2EE standards and portability: The J2EE specifications have,
by design, set the platform-compatibility bar at a level that’s relatively easy to clear.
Because the platform specifications are developed collaboratively, platform vendors
must have plenty of opportunity to supply J2EE platform implementations. Obvious
and unreasonable implementation hurdles were avoided. For example, there are no
restrictions on vendors adding value to J2EE products by supporting services not
defined in the specifications.

While the J2EE standard is designed to encourage component portability, spe-
cific results are primarily a function of how a component uses services provided by
its container. Vendor-specific features limit component portability. The J2EE speci-
fications spell out a base set of capabilities that a component can count on, providing
components with a level of cross-container portability. Needless to say, an applica-
tion developer expecting to deploy on a specific vendor implementation of the J2EE
platform should be able to do so across a wide range of operating systems and hard-
ware architectures.

1.2.2 J2EE Platform Benefits

With features designed to expedite the process of developing distributed applica-
tions, the J2EE platform offers several benefits:

• Simplified architecture and development

• Freedom of choice in servers, tools, and components

• Integration with existing information systems

• Scalability to meet demand variations

• Flexible security model

1.2.2.1 Simplified Architecture and Development

The J2EE platform supports a simplified, component-based development model.
Because it is based on the Java programming language and the Java 2 Platform,
Standard Edition (J2SETM platform), this model offers “Write-Once-Run-Any-
whereTM” portability, supported by any server product that conforms to the J2EE
standard.

THE PLATFORM FOR ENTERPRISE SOLUTIONS 11

DEA2e.book Page 11 Friday, March 8, 2002 12:31 AM
The component-based J2EE development model can enhance application
development productivity in a number of ways:

• Maps easily to application functionality—Component-based application
models map easily and flexibly to the functionality desired from an applica-
tion. As the examples presented throughout this book illustrate, the J2EE plat-
form provides a variety of ways to configure the architecture of an application,
depending on such things as client types required, level of access required to
data sources, and other considerations. Component-based design also simpli-
fies application maintenance, since components can be updated and replaced
independently—new functionality can be shimmed into existing applications
simply by updating selected components.

• Enables assembly- and deploy-time behaviors—Because of the high level of
service standardization, much of the code of a J2EE application can be gener-
ated automatically by tools, with minimal developer intervention. In addition,
components can expect standard services to be available in the runtime envi-
ronment and can dynamically connect to other components by means of con-
sistent interfaces. As a result, many application behaviors can be configured at
application assembly or deployment time, without recoding. Component de-
velopers can communicate requirements to application deployers through spe-
cific deployment descriptors and settings. Tools can automate this process to
further expedite development.

• Supports division of labor—Components help divide the labor of application
development among specific skill sets, enabling each member of a develop-
ment team to focus on his or her ability. Web page authors can create JSP tem-
plates, Java programming language coders can implement application
behavior, domain experts can develop business logic, and application develop-
ers and integrators can assemble and deploy applications. This division of la-
bor also expedites application maintenance. For example, the user interface is
the most dynamic part of many applications, particularly on the Web. With the
J2EE platform, Web page authors can tweak the look and feel of JSP pages
without programmer intervention.

The J2EE specifications define a number of roles, including application com-
ponent provider, application assembler, and application deployer. On some devel-
opment teams, one or two people may perform all these roles, while on others

CHAPTER 1 INTRODUCTION12

DEA2e.book Page 12 Friday, March 8, 2002 12:31 AM
these tasks may be further subdivided into more specific skill sets (such as user
interface designers, programmers, and so on).

1.2.2.2 Integrating Existing Enterprise Information Systems

The J2EE platform, together with the J2SE platform, includes a number of industry
standard APIs for accessing existing enterprise information systems. Basic access to
these systems is provided by the following APIs:

• The J2EE Connector architecture is the infrastructure for interacting with a va-
riety of Enterprise Information System types, including ERP, CRM, and other
legacy systems.

• The JDBCTM API is used for accessing relational data from the Java program-
ming language.

• The Java Transaction API (JTA) is the API for managing and coordinating
transactions across heterogeneous enterprise information systems.

• The Java Naming and Directory InterfaceTM (JNDI) is the API for accessing in-
formation in enterprise name and directory services.

• The Java Message Service (JMS) is the API for sending and receiving messag-
es via enterprise messaging systems such as IBM MQ Series and TIBCO Ren-
dezvous. In the J2EE platform version 1.3, message-driven beans provide a
component-based approach to encapsulating messaging functionality.

• The JavaMailTM API is used for sending and receiving e-mail.

• Java IDL provides the mechanism for calling CORBA services.

• Java APIs for XML provide support for integration with legacy systems and
applications, and for implementing Web services in the J2EE platform.

In addition, specialized access to enterprise resource planning and mainframe
systems such as IBM’s CICS and IMS is provided through the J2EE Connector
architecture. Since each of these systems is highly complex and specialized, they
require unique tools and support to ensure utmost simplicity to application devel-
opers. Thanks to new integration features in the platform, enterprise beans can
combine the use of connector access objects and service APIs with middle-tier
business logic to accomplish their business functions.

THE PLATFORM FOR ENTERPRISE SOLUTIONS 13

DEA2e.book Page 13 Friday, March 8, 2002 12:31 AM
1.2.2.3 Choice of Servers, Tools, and Components

The J2EE standard and J2EE brand have created a huge marketplace for servers,
tools, and components. The J2EE brand on a server product ensures the consistent
level of service that is fundamental to the goals of the J2EE platform. At the same
time, J2EE standards ensure a lively marketplace for tools and components. Based
on past experience and industry momentum, all leading enterprise software vendors
are expected to provide the marketplace for J2EE 1.3 products.

The standardization and branding of the J2EE platform provides many bene-
fits, including:

• A range of server choices—Application development organizations can ex-
pect J2EE branded platforms from a variety of vendors, providing a range of
choices in hardware platforms, operating systems, and server configurations.
This ensures that businesses get a choice of servers appropriate to their needs.

• Designed for tool support—Both enterprise beans and JSP page components
are designed to be manipulated by graphical development tools and to allow
automating many of the application development tasks traditionally requiring
the ability to write and debug code. Both J2EE server providers and third-party
tool developers have developed tools that conform to J2EE standards and sup-
port various application development tasks and styles. Application developers
have a choice of tools to manipulate and assemble components, and individual
team members may choose tools that best suit their specific requirements.

• A marketplace for components—Component-based design ensures that
many types of behavior can be standardized, packaged, and reused by any
J2EE application. Component vendors will provide a variety of off-the-shelf
component solutions, including accounting beans, user interface templates,
and even vertical market functionality of interest in specific industries. Appli-
cation architects get a choice of standardized components to handle common
or specialized tasks.

The J2EE standard and associated branding program ensure that solutions are
compatible. By setting the stage for freedom of choice, the J2EE platform makes
it possible to develop with confidence that the value of your investment will be
protected.

CHAPTER 1 INTRODUCTION14

DEA2e.book Page 14 Friday, March 8, 2002 12:31 AM
1.2.2.4 Scales Easily

J2EE containers provide a mechanism that supports simplified scaling of distributed
applications, with no application development effort.

Because J2EE containers provide components with transaction support, data-
base connections, life cycle management, and other features that influence perfor-
mance, they can be designed to provide scalability in these areas. For example,
containers may pool database connections, providing clients with quick, efficient
access to data.

Because containers may run on multiple systems, Web containers can auto-
matically balance load in response to fluctuating demand.

1.2.2.5 Simplified, Unified Security Model

The J2EE security model is designed to support single sign on access to application
services. Component developers can specify the security requirements of a compo-
nent at the method level to ensure that only users with appropriate permissions can
access specific data operations. While both Enterprise JavaBeans technology and
Java Servlet APIs provide programmatic security control, the basic role-based secu-
rity mechanism (where groups of users share specific permissions) is specified
entirely at application deployment time. This provides both greater flexibility and
better security control.

1.3 J2EE Application Scenarios

The following sections present a number of application scenarios, setting the stage
for a detailed discussion of the sample application. The J2EE specifications encour-
age architectural diversity. The J2EE specifications and technologies make few
assumptions about the details of API implementations. The application-level deci-
sions and choices are ultimately a trade-off between functional richness and com-
plexity.

The J2EE programming model is flexible enough for applications that support
a variety of client types, with both the Web container and EJB container as
optional. Figure 1.2 reflects a range of possible application configurations, includ-
ing cases where clients interact solely with the Web container, where clients inter-
act directly with the EJB container, and full-blown multitier applications with
stand-alone clients, Web-tier components, middle-tier EJB components, and EIS-
tier access to resources and data. While the J2EE platform has no implicit bias

J2EE APPLICATION SCENARIOS 15

DEA2e.book Page 15 Friday, March 8, 2002 12:31 AM
favoring one application scenario over another, a J2EE product should be able to
support any and all of these scenarios.

Figure 1.2 J2EE Application Scenarios

The sample application is a multitier application that uses both a Web con-
tainer and an EJB container. The following enterprise requirements heavily influ-
enced the choices made in developing the sample application:

• The need to make rapid and frequent changes to the “look” of the application

• The need to partition the application along the lines of presentation and busi-
ness logic so as to increase modularity

• The need to simplify the process of assigning suitably trained human resources
to accomplish the development task such that work can proceed along relative-
ly independent but cooperating tracks

• The need to have developers familiar with back-office applications unbur-
dened from GUI and graphic design work, for which they may not be ideally
qualified

• The need to have the necessary vocabulary to communicate the business logic
to teams concerned with human factors and the aesthetics of the application

CHAPTER 1 INTRODUCTION16

DEA2e.book Page 16 Friday, March 8, 2002 12:31 AM
• The ability to assemble back-office applications using components from a va-
riety of sources, including off-the-shelf business logic components

• The ability to deploy transactional components across multiple hardware and
software platforms independently of the underlying database technology

• The ability to externalize internal data without having to make many assump-
tions about the consumer of the data and to accomplish this in a loosely cou-
pled manner

Clearly, relaxing any or all of these requirements would influence some of the
application-level decisions and choices that a designer would make. Although it is
reasonable to speak of “throw-away” presentation logic (that is, applications with
a look and feel that ages rapidly), there is still significant inertia associated with
business logic. This is even more true in the case of database schemas and data in
general. It is fair to say that as one moves further away from EIS resources, the
volatility of the application code increases dramatically; that is, the code’s “shelf-
life” drops significantly.

In summary, the J2EE programming model promotes a model that anticipates
growth, encourages component-oriented code reusability, and leverages the
strengths of inter-tier communication. It is the tier integration that lies at the heart
of the J2EE programming model.

1.3.1 Multitier Application Scenario

Figure 1.3 illustrates an application scenario in which the Web container hosts Web
components that are almost exclusively dedicated to handling a given application’s
presentation logic. JSP pages, supported by servlets, generate dynamic Web content
for delivery to the client. The EJB container hosts application components that use
EIS resources to service requests from Web-tier components. This architecture
decouples data access from the application’s user interface. The architecture is also

J2EE APPLICATION SCENARIOS 17

DEA2e.book Page 17 Friday, March 8, 2002 12:31 AM
implicitly scalable. Application back-office functionality is relatively isolated from
the end-user look and feel.

Figure 1.3 Multitier Application

It is worth noting that XML plays an integral role in this scenario. The ability
to both produce and consume XML data messages in the Web container is an
extremely flexible way to embrace a diverse set of client types. These platforms
range from general purpose XML-enabled browsers to specialized XML render-
ing engines targeting vertical solutions. XML data messages typically use HTTP
as their transport protocol. Java and XML are complementary technologies: The
Java language offers portable code, XML provides portable data.

In the Web tier, the question of whether to use JSP pages or servlets comes up
repeatedly. JSP technology is intended for application user interface components,
while Java Servlets are preferred for request processing and application control
logic. Servlets and JSP pages work together to provide dynamic content from the
Web tier.

CHAPTER 1 INTRODUCTION18

DEA2e.book Page 18 Friday, March 8, 2002 12:31 AM
1.3.2 Stand-Alone Client Scenario

Figure 1.4 illustrates a stand-alone client scenario.

Figure 1.4 Stand-Alone Clients

The stand-alone client may be one of three types:

• EJB clients interacting directly with enterprise beans hosted in an EJB contain-
er within an EJB server, as shown in Figure 1.5. This scenario uses RMI-IIOP,
and the EJB server accesses EIS resources using JDBC and the J2EE Connec-
tor architecture.

Figure 1.5 EJB-Centric Java Client

J2EE APPLICATION SCENARIOS 19

DEA2e.book Page 19 Friday, March 8, 2002 12:31 AM
• Stand-alone clients, implemented in the Java language or another program-
ming language, consuming dynamic Web content (usually XML data messag-
es). In this scenario, the Web container essentially handles XML
transformations and provides Web connectivity to clients. Presentation logic
occurs in the client tier. The Web tier handles business logic and may directly
access EIS resources. Ideally, business logic is implemented as enterprise
beans to take advantage of the rich enterprise beans component model.

• Stand-alone Java application clients accessing enterprise information system
resources directly using JDBC or Connectors. In this scenario, presentation
and business logic are co-located on the client platform and may in fact be
tightly integrated into a single application. This scenario is a classic two-tier
client-server architecture, with its associated distribution, maintenance, and
scalability issues.

1.3.3 Web-Centric Application Scenario

Figure 1.6 illustrates a three-tier Web-centric application scenario.

Figure 1.6 Web-Centric Application Scenario

There are a number of scenarios in which the use of enterprise beans in an
application would be considered overkill: sort of like using a sledgehammer to
crack a nut. The J2EE specification doesn’t mandate a specific application config-
uration, nor could it realistically do so. The J2EE platform is flexible enough to
support the application configuration most appropriate to a specific application
design requirement.

As demonstrated in the book J2EE Technology In Practice, a three-tier Web-
centric application scenario is widely used as the starting point for many J2EE

CHAPTER 1 INTRODUCTION20

DEA2e.book Page 20 Friday, March 8, 2002 12:31 AM
applications. The Web container hosts both presentation and business logic, and it
is assumed that JDBC and the J2EE Connector architecture are used to access EIS
resources.

Figure 1.7 provides a closer look at the Web container in a Web application
scenario.

Figure 1.7 Web Container in a Three-Tier Scenario

Keep in mind that the term “Web container” has a precise meaning. It doesn’t
necessarily mean a distinct process running on a distinct piece of hardware. In
many cases, J2EE platform providers may co-locate their Web and EJB contain-
ers, running them within the same Java Virtual Machine (JVM). J2EE applications
deployed on such an implementation are still considered multitier applications,
because of the division of responsibilities that the separate technologies imply.

1.3.4 Business-to-Business Scenario

Figure 1.8 illustrates a business-to-business scenario. This scenario focuses on peer-
level interactions between both Web and EJB containers. The J2EE programming
model promotes the use of XML data messaging over HTTP as the primary means

HOW THIS BOOK IS ORGANIZED 21

DEA2e.book Page 21 Friday, March 8, 2002 12:31 AM
of establishing loosely coupled communications between Web containers. This is a
natural fit for the development and deployment of Web-based commerce solutions.

Figure 1.8 Business-to-Business Scenario

The peer-level communications between EJB containers is currently a more
tightly coupled solution most suitable for intranet environments. With support for
JMS and message-driven beans, the J2EE 1.3 platform makes developing loosely-
coupled intranet solutions increasingly practical.

Future releases of the J2EE platform will provide additional functionality in
the form of Java APIs for XML, which enable more complete support for loosely
coupled applications through XML-based Web services.

1.4 How This Book Is Organized

The remainder of this book is divided into the following chapters:

• Chapter 2, “J2EE Platform Technologies,” provides an overview of the
component, service, and communication technologies supported by the J2EE
platform.

• Chapter 3, “The Client Tier,” presents implementation options for J2EE cli-
ents and provides guidelines for choosing among these options.

CHAPTER 1 INTRODUCTION22

DEA2e.book Page 22 Friday, March 8, 2002 12:31 AM
• Chapter 4, “The Web Tier,” describes technologies available for supporting
development in the Web tier. It includes guidelines and techniques for using
J2EE Web components and describes several Web application architectures.

• Chapter 5, “The Enterprise JavaBeans Tier,” describes the capabilities of
the EJB tier of the J2EE platform and discusses design choices for implement-
ing business logic.

• Chapter 6, “Integrating with the Enterprise Information System Tier,”
describes recommended approaches for accessing enterprise information sys-
tems and how J2EE components must be configured to access them.

• Chapter 7, “Packaging and Deployment,” describes the capabilities provid-
ed by the J2EE platform for packaging and deploying J2EE applications, and
provides heuristics and practical tips on how to use these capabilities.

• Chapter 8, “Transaction Management,” describes the transaction services
provided by the J2EE platform and provides recommendations on how best to
use those services.

• Chapter 9, “Security,” describes the mapping of the J2EE security model to
enterprise computing environments and infrastructures.

• Chapter 10, “J2EE Internationalization and Localization,” new in this edi-
tion, explains how to expand an application’s reach across the globe by cus-
tomizing its interfaces and logic for multiple languages, countries, and
cultures.

• Chapter 11, “Architecture of the Sample Application,” pulls all of the topics
in the preceding chapters into a coherent programming model for interactive ap-
plications in the J2EE platform, and provides specific architectural guidelines.

• “Glossary,” is a list of words and phrases found in this book and their defini-
tions.

Additional information is available on the Java BluePrints Web site, listed in
Section 1.6 on page 23. The Web site includes additional content, available only
online, that describes in detail the architecture of the Java Pet Store sample appli-
cation.

SUMMARY 23

DEA2e.book Page 23 Friday, March 8, 2002 12:31 AM
1.5 Summary

The challenge to IT professionals today is to efficiently develop and deploy distrib-
uted applications for use on both corporate intranets and over the Internet. Compa-
nies that can do this effectively will gain strategic advantage in the information
economy.

The Java 2 Platform, Enterprise Edition is a standard set of Java technologies
that streamline the development, deployment, and management of enterprise
applications. The J2EE platform is functionally complete in the sense that it is
possible to develop a large class of enterprise applications using only J2EE tech-
nologies. Applications written for the J2EE platform will run on any J2EE com-
patible server. The J2EE platform provides a number of benefits for organizations
developing such applications, including a simplified development model; indus-
trial-strength scalability; support for existing information systems; choices in
servers, tools, and components; and a simple, flexible security model.

By providing the ability to deploy component-oriented enterprise applications
across multiple computing tiers in a platform-neutral manner, the J2EE platform
can give fast-moving enterprises a significant and measurable competitive edge.

1.6 References and Resources

• J2EE Technology in Practice: Building Business Applications with the JavaTM

2 Platform, Enterprise Edition. R. Cattell, J. Inscore, Enterprise Partners.
Copyright 2001, Addison-Wesley.

• The Java BluePrints Web site <http://java.sun.com/blueprints>

• The Java Tutorial Web site <http://java.sun.com/docs/books/tutorial>

DEA2e.book Page 24 Friday, March 8, 2002 12:31 AM

DEA2e.book Page 25 Friday, March 8, 2002 12:31 AM
C H A P T E R 2

J2EE Platform Technologies

by Vijay Ramachandran

THE J2EE platform specifies technologies to support multitier enterprise applica-
tions. These technologies fall into three categories: component, service, and com-
munication.

The component technologies are those used by developers to create the essen-
tial parts of the enterprise application, namely the user interface and the business
logic. The component technologies allow the development of modules that can be
reused by multiple enterprise applications. The component technologies are sup-
ported by J2EE platform’s system-level services. These system-level services sim-
plify application programming and allow components to be customized to use
resources available in the environment in which they are deployed.

Since most enterprise applications require access to existing enterprise informa-
tion systems, the J2EE platform supports APIs that provide access to databases,
enterprise information systems such as SAP and CICS, and services such as trans-
action, naming and directory, and asynchronous communication. Finally, the J2EE
platform provides technologies that enable communication between clients and
servers and between collaborating objects hosted by different servers.

This chapter will provide an overview of the J2EE platform technologies.

2.1 Component Technologies

A component is an application-level software unit. In addition to JavaBeansTM com-
ponents, which are part of the J2SETM platform, the J2EE platform supports the fol-
lowing types of components: applets, application clients, Enterprise JavaBeansTM

(EJBTM)components, Web components, and resource adapter components.
25

CHAPTER 2 J2EE PLATFORM TECHNOLOGIES26

DEA2e.book Page 26 Friday, March 8, 2002 12:31 AM
Applets and application clients run on a client platform, while EJB, Web, and
resource adapter components run on a server platform.

Except for resource adapters, application architects and developers typically
design and develop the components of a J2EE application. EIS and tool vendors
design, develop, and provide resource adapter components, which are then
deployed on the server and used by other components of the platform to access
data in an EIS.

All J2EE components depend on the runtime support of a system-level entity
called a container. Containers provide components with services such as lifecycle
management, security, deployment, and threading. Because containers manage
these services, many component behaviors can be declaratively customized when
the component is deployed in the container. For example, an application compo-
nent provider can specify an abstract name for a database that an Enterprise Java-
Beans component needs to access, and a deployer will link that name with the
information (such as a user name and password) needed to access the database in
a given environment.

The following sections provide overviews of the different types of J2EE com-
ponents and containers.

2.1.1 Types of J2EE Clients

The J2EE platform allows different types of clients to interact with server-side com-
ponents.

• Applets are Java-based client components that usually execute within a Web
browser, and that have access to all features of the Java programming lan-
guage. J2EE applications can use applets for a more powerful user interface.
Browser-based applet clients communicate over HTTP.

• An application client executes in its own client container. (The client container
is a set of libraries and APIs that support the client code.) Application clients
are user interface programs that can directly interact with the EJB tier of a
J2EE platform-based application using RMI-IIOP. These clients have full ac-
cess to J2EE platform services such as JNDI lookups, asynchronous messag-
ing, and the JDBCTM API. An application client’s container provides access to
these J2EE services and handles RMI-IIOP communication.

• A Java Web Start-enabled rich client is a stand-alone client based on
JFC/Swing APIs and enabled for the J2EE platform through the Java Web Start

COMPONENT TECHNOLOGIES 27

DEA2e.book Page 27 Friday, March 8, 2002 12:31 AM
technology. A rich client has increased user interface features available to it,
such as a better interactive environment and richer graphic capabilities, along
with the J2EE platform features and services. Java Web Start technology en-
ables application deployment through a single-step download-and-launch pro-
cess performed by means of a Web browser. Rich clients communicate with
the server using the J2SE environment to execute XML over HTTP(S). As
Web service technologies gain ground in the future, these rich clients are well-
positioned to efficiently use open communication standards such as JAX-RPC
technology.

• A wireless client is based on Mobile Information Device Profile (MIDP) tech-
nology. MIDP is a set of Java APIs which, along with Connected Limited De-
vice Configuration (CLDC), provides a complete J2ME environment for
wireless devices.

2.1.2 Web Components

A Web component is a software entity that provides a response to a request. A Web
component typically generates the user interface for a Web-based application. The
J2EE platform specifies two types of Web components: servlets and JavaServer
PagesTM (JSPTM) pages. The following sections give an overview of Web compo-
nents, which are discussed in detail in Chapter 4.

2.1.2.1 Servlets

A servlet is a component that extends the functionality of a Web server in a porta-
ble and efficient manner. A Web server hosts Java servlet classes that execute
within a servlet container. The Web server maps a set of URLs to a servlet so that
HTTP requests to these URLs invoke the mapped servlet. When a servlet receives
a request from a client, it generates a response, possibly by invoking business
logic in enterprise beans or by querying a database directly. It then sends the
response—as an HTML or XML document—to the requestor.

A servlet developer uses the servlet API to:

• Initialize and finalize a servlet

• Access a servlet’s environment

• Receive/forward requests and send responses

• Maintain session information on behalf of a client

CHAPTER 2 J2EE PLATFORM TECHNOLOGIES28

DEA2e.book Page 28 Friday, March 8, 2002 12:31 AM
• Interact with other servlets and other components

• Use a filter mechanism for pre- and post-processing of requests and responses

• Implement and enforce security at the Web tier

2.1.2.2 JavaServer Pages Technology

The JavaServer Pages (JSP) technology provides an extensible way to generate
dynamic content for a Web client. A JSP page is a text-based document that
describes how to process a request to create a response. A JSP page contains:

• Template data to format the Web document. Typically the template data uses
HTML or XML elements. Document designers can edit and work with these
elements on the JSP page without affecting the dynamic content. This ap-
proach simplifies development because it separates presentation from dynamic
content generation.

• JSP elements and scriptlets to generate the dynamic content in the Web docu-
ment. Most JSP pages use JavaBeans and/or Enterprise JavaBeans components
to perform the more complex processing required of the application. Standard
JSP actions can access and instantiate beans, set or retrieve bean attributes, and
download applets. JSP technology is extensible through the development of
custom actions, or tags, which are encapsulated in tag libraries.

2.1.2.3 Web Component Containers

Web components are hosted by servlet containers, JSP containers, and Web con-
tainers. In addition to standard container services, a servlet container provides the
network services by which requests and responses are sent. It also decodes requests
and formats responses. All servlet containers must support HTTP as a protocol for
requests and responses; they may also support other request-response protocols such
as HTTPS. A JSP container provides the same services as a servlet container.
Servlet and JSP containers are collectively referred to as Web containers.

2.1.3 Enterprise JavaBeans Components

The Enterprise JavaBeans architecture is a server-side technology for developing
and deploying components containing the business logic of an enterprise applica-
tion. Enterprise JavaBeans components, also referred to as enterprise beans, are

COMPONENT TECHNOLOGIES 29

DEA2e.book Page 29 Friday, March 8, 2002 12:31 AM
scalable, transactional, and multi-user secure. There are three types of enterprise
beans: session beans, entity beans, and message-driven beans. Session and entity
beans have two types of interfaces: a component interface and a home interface. The
home interface defines methods to create, find, remove, and access metadata for the
bean. The component interfaces define the bean’s business logic methods. Message-
driven beans do not have component and home interfaces.

An enterprise bean’s component and home interfaces are required to be either
local or remote. Remote interfaces are RMI interfaces provided to allow the
clients of a bean to be location independent. Regardless of whether the client of a
bean that implements a remote interface is located on the same VM or a different
VM, the client uses the same API to access the bean’s methods. Arguments and
return results are passed by value between a client and a remote enterprise bean,
and thus there is a serialization overhead.

A client of an enterprise bean that implements a local interface must be
located in the same VM as the bean. Because object arguments and return results
are passed by reference between a client and a local enterprise bean, there is no
serialization overhead.

The following sections give an overview of enterprise beans. Enterprise beans
are discussed in detail in Chapter 5.

2.1.3.1 Session Beans

A session bean is created to provide some service on behalf of a client and usually
exists only for the duration of a single client-server session. A session bean per-
forms operations such as calculations or accessing a database for the client. While a
session bean may be transactional, it is not recoverable should its container crash.

Session beans can be stateless or can maintain conversational state across
methods and transactions. If they do maintain state, the EJB container manages
this state if the object must be removed from memory. However, the session bean
object itself must manage its own persistent data.

2.1.3.2 Entity Beans

An entity bean is a persistent object that represents data maintained in a data store;
its focus is data-centric. An entity bean is identified by a primary key. An entity
bean can manage its own persistence or it can delegate this function to its container.

CHAPTER 2 J2EE PLATFORM TECHNOLOGIES30

DEA2e.book Page 30 Friday, March 8, 2002 12:31 AM
An entity bean can live as long as the data it represents. Persistence is handled in one
of two ways:

• Bean-managed persistence—The developer handles persistence as part of the
entity bean’s source code.

• Container-managed persistence—The developer specifies the bean fields
that need to be persistent and lets the EJB container manage persistence.

Beans with container-managed persistence are more portable across data-
bases. In addition, entity beans with container-managed persistence can maintain
relationships among themselves. This feature enables queries that join multiple
database tables. With bean-managed persistence, a change in the underlying data-
base may require the developer to change the entity bean’s source code to conform
to the SQL implemented by the new database.

2.1.3.3 Message-Driven Beans

A message-driven bean enables asynchronous clients to access the business logic in
the EJB tier. Message-driven beans are activated only by asynchronous messages
received from a JMS queue to which they listen. A client does not directly access a
message-driven bean; instead, a client asynchronously sends a message to a JMS
queue or topic. Because message-driven beans have no need to expose their methods
to clients, they do not implement component or home interfaces. They also do not
maintain state on behalf of a client.

2.1.3.4 EJB Component Containers

Enterprise beans are hosted by an EJB container. In addition to standard container
services, an EJB container provides a range of transaction and persistence services
and access to the J2EE service and communication APIs.

COMPONENT TECHNOLOGIES 31

DEA2e.book Page 31 Friday, March 8, 2002 12:31 AM
2.1.4 Components, Containers, and Services

The J2EE component types and their containers are illustrated in Figure 2.1.

Figure 2.1 J2EE Components and Containers

Containers provide all application components with the J2SE platform APIs,
which include the Java IDL and JDBC 2.0 core enterprise APIs. Table 2.1 lists the
Standard Extension APIs that are available in each type of container. The J2EE
platform APIs are described in Section 2.4 on page 42 and Section 2.5 on page 45.

Table 2.1 J2EE Required Standard Extension APIs

API Applet
Application

Client Web EJB

JDBC 2.0 Extension N Y Y Y

JTA 1.0 N N Y Y

CHAPTER 2 J2EE PLATFORM TECHNOLOGIES32

DEA2e.book Page 32 Friday, March 8, 2002 12:31 AM
2.2 Platform Roles

The J2EE platform defines several distinct roles in the application development and
deployment life cycle: J2EE product provider, application component provider,
application assembler, deployer, system administrator, and tool provider. In general,
the roles are defined to aid in identifying the tasks performed by various parties
during the development, deployment, and running of a J2EE application. However,
while some of these roles, such as system administrator and tool provider, perform
tasks that are common to non-J2EE platforms, other roles have a meaning specific to
the J2EE platform, because the tasks those roles perform are specific to J2EE tech-
nology. In particular, application component providers, application assemblers, and
deployers must configure J2EE components and applications to use J2EE platform
services (described in Section 2.3 on page 35).

JNDI 1.2 N Y Y Y

Servlet 2.3 N N Y N

JSP 1.2 N N Y N

EJB 2.0 N Ya Yb Y

RMI-IIOP 1.0 N Y Y Y

JMS 1.0 N Y Y Y

JavaMail 1.2 N N Y Y

JAF 1.0 N N Y Y

JAXP 1.1 N Y Y Y

JAAS 1.0 N Y Y Y

Connector 1.0 N N Y Y

a Application clients can only make use of the enterprise bean client APIs.
b Servlets and JSP pages can only make use of the enterprise bean client

APIs.

Table 2.1 J2EE Required Standard Extension APIs (continued)

API Applet
Application

Client Web EJB

PLATFORM ROLES 33

DEA2e.book Page 33 Friday, March 8, 2002 12:31 AM
The roles can be fulfilled by whatever personnel match an organization’s
actual application development and deployment workflow. Thus, each J2EE role
may be performed by a different party or a single party may perform several roles.
For example, a programmer may perform the roles of application component pro-
vider and application assembler.

The following sections define the J2EE platform roles. Subsets of some of
these roles are defined in the EJB specification, including enterprise bean pro-
vider, EJB container provider, and EJB server provider. The JavaServer Pages
specification defines the JSP container provider role, and the Java Servlet specifi-
cation defines the roles of application developer, servlet container provider, Web
container provider, and Web server provider.

2.2.1 J2EE Product Provider

A J2EE product provider, typically an operating system vendor, database system
vendor, application server vendor, or a Web server vendor, implements a J2EE
product providing the component containers, J2EE platform APIs, and other fea-
tures defined in the J2EE specification. A J2EE product is free to implement inter-
faces not specified by the J2EE specification in an implementation-specific way.

A J2EE product provider provides application deployment and management
tools. Deployment tools enable a deployer to deploy components on the J2EE
product. The deployer role is described in Section 2.2.4 on page 34. Management
tools allow a system administrator to manage the J2EE product and the applica-
tions deployed on the J2EE product. The form of these tools is not prescribed by
the J2EE specification. The system administrator role is described in Section 2.2.5
on page 34.

2.2.2 Application Component Provider

Application component providers produce the building blocks of a J2EE applica-
tion. They typically have expertise in developing reusable components as well as
sufficient business domain knowledge. Application component providers need not
know anything about the operational environment in which their components will
be used. There are multiple roles for application component providers, including
HTML page authors, document programmers, enterprise bean developers, and so
on. These roles use tools provided by a tool provider to produce J2EE components
and applications. The tool provider role is described in Section 2.2.6 on page 34.

CHAPTER 2 J2EE PLATFORM TECHNOLOGIES34

DEA2e.book Page 34 Friday, March 8, 2002 12:31 AM
2.2.3 Application Assembler

An application assembler takes a set of components developed by application com-
ponent providers and assembles them into a complete J2EE application. Their
expertise lies in providing solutions for a specific problem domain, for example,
the financial industry. Application assemblers may not be familiar with the source
code of the components that they use, but they use declarative descriptors for the
components in order to know how to build applications from them. Like applica-
tion component providers, they need not know anything about the operational
environment in which their applications will be used. An application assembler
will generally use GUI tools provided by either an application component provider
or tool provider. An application assembler is responsible for providing assembly
instructions describing external dependencies of the application that the deployer
must resolve in the deployment process.

2.2.4 Deployer

A deployer, an expert in a specific operational environment, is responsible for
deploying J2EE components and applications into that environment. A deployer
uses tools supplied by the J2EE product provider to perform deployment tasks. A
deployer installs components and applications into a J2EE server and configures
components and applications to resolve all the external dependencies declared by
the application component provider and application assembler.

2.2.5 System Administrator

A system administrator is responsible for configuring and administering an enter-
prise’s computing and networking infrastructure. A system administrator is also
responsible for overseeing the runtime well-being of the deployed J2EE applica-
tions. The system administrator typically uses runtime monitoring and management
tools provided by the J2EE product provider to accomplish these tasks.

2.2.6 Tool Provider

A tool provider provides tools used for the development and packaging of applica-
tion components. A variety of tools for use with the J2EE platform are possible, cor-
responding to the many component types supported by the J2EE platform as well as
the various roles defined for the J2EE development and deployment process. Plat-
form-independent tools can be used for all phases of development up to the deploy-

PLATFORM SERVICES 35

DEA2e.book Page 35 Friday, March 8, 2002 12:31 AM
ment of an application. Platform-dependent tools are used for deployment,
management, and monitoring of applications. Future versions of the J2EE specifica-
tion may define more interfaces that allow such tools to be platform independent.
For example, JSR 77 defines a tool API for application development, and JSR 88
defines an API for application management. These APIs are likely to be supported
in the next version of the J2EE specification.

2.3 Platform Services

J2EE platform services simplify application programming and allow components
and applications to be customized at deployment time to use resources available in
the deployment environment. This section gives a brief overview of the J2EE plat-
form naming, deployment, transaction, and security services.

2.3.1 Naming Services

J2EE naming services provide application clients, enterprise beans, and Web com-
ponents with access to a JNDI naming environment (described in Section 2.4.3 on
page 43). A naming environment allows a component to be customized without the
need to access or change the component’s source code. A container implements the
component’s environment and provides it to the component as a JNDI naming con-
text.

A J2EE component locates its environment naming context using JNDI inter-
faces. A component creates a javax.naming.InitialContext object and looks up
the environment naming context in InitialContext under the name
java:comp/env. A component’s naming environment is stored directly in the envi-
ronment naming context or in any of its direct or indirect subcontexts.

A J2EE component can access named system-provided and user-defined
objects. The names of system-provided objects, such as JTA UserTransaction

objects, are stored in the environment naming context, java:comp/env. The J2EE
platform allows a component to name user-defined objects, such as enterprise
beans, environment entries, JDBC DataSource objects, and message connections.
An object should be named within a subcontext of the naming environment
according to the type of the object. For example, enterprise beans are named
within the subcontext java:comp/env/ejb and JDBC DataSource references in the
subcontext java:comp/env/jdbc.

CHAPTER 2 J2EE PLATFORM TECHNOLOGIES36

DEA2e.book Page 36 Friday, March 8, 2002 12:31 AM
2.3.2 Deployment Services

J2EE deployment services allow components and applications to be customized at
the time they are packaged and deployed.

J2EE applications are deployed as a set of nested units. Each unit contains a
deployment descriptor, an XML-based text file whose elements declaratively
describe how to assemble and deploy the unit into a specific environment. Deploy-
ment descriptors contain many elements related to customizing J2EE platform
services, such as transactions and security.

The following sections give an overview of J2EE platform deployment ser-
vices. Deployment services are discussed in detail in Chapter 7.

2.3.2.1 Deployment Units

A J2EE application consists of one or more J2EE modules and one J2EE applica-
tion deployment descriptor. An application deployment descriptor contains a list of
the applications’s modules and information on how to customize the application. A
J2EE application consists of one or more Java Archive (JAR) files along with zero or
more Resource Archive (RAR) files packaged into an Enterprise ARchive (EAR) file
with an .ear extension.

A J2EE module consists of one or more J2EE components for the same con-
tainer type and one component deployment descriptor of that type. A component
deployment descriptor contains declarative data to customize the components in
the module. A J2EE module without an application deployment descriptor can be
deployed as a stand-alone J2EE module.

The three types of J2EE modules are:

• Enterprise JavaBeans modules contain class files for enterprise beans and an
EJB deployment descriptor. EJB modules are packaged as JAR files with a .jar
extension.

• Web modules contain JSP files, class files for servlets, GIF and HTML files,
and a Web deployment descriptor. Web modules are packaged as JAR files
with a .war (Web ARchive) extension.

• Resource adapter modules contain all Java interfaces, classes, native libraries,
and other documentation, along with the resource adapter deployment descrip-
tor. Together, these implement the Connector architecture for a particular EIS.
Resource adapter modules are packages as JAR files with a .rar (Resource
adapter ARchive) extension.

PLATFORM SERVICES 37

DEA2e.book Page 37 Friday, March 8, 2002 12:31 AM
• Application client modules contain class files and an application client deploy-
ment descriptor. Application client modules are packaged as JAR files with a
.jar extension.

2.3.2.2 Platform Roles in the Deployment Process

Each J2EE platform role performs specific activities related to deployment. An
application component provider specifies component deployment descriptor ele-
ments and packages components into modules. An application assembler resolves
references between modules and assembles modules into a single deployment
unit. A deployer creates links between entities referred to by the application and
entities in the deployment environment. A resource adapter provider specifies the
deployment descriptor for the resource adapter elements and packages it along with
the classes and libraries into separate modules.

2.3.3 Transaction Services

Transactions divide an application into a series of indivisible or “atomic” units of
work. A system that supports transactions ensures that each unit fully completes
without interference from other processes. If the unit can be completed in its
entirety, it is committed. Otherwise, the system completely undoes (rolls back)
whatever work the unit had performed. Transactions simplify application develop-
ment because they free the application component provider from the complex
issues of failure recovery and multi-user programming.

Transactions, as provided by the J2EE platform, have the following character-
istics:

• J2EE transactions are flat. A flat transaction cannot have any child (nested)
transactions.

• The J2EE platform implicitly handles many transaction details, such as propa-
gating information specific to a particular transaction instance and coordinat-
ing among multiple transaction managers.

The following sections give an overview of J2EE platform transaction services.
Transaction services are discussed in detail in Chapter 8.

CHAPTER 2 J2EE PLATFORM TECHNOLOGIES38

DEA2e.book Page 38 Friday, March 8, 2002 12:31 AM
2.3.3.1 Accessing Transactions

A JTA transaction is a transaction that can span multiple components and
resource managers. A resource manager local transaction is a transaction that is
specific to a particular enterprise information system connection.

JTA transactions are created and managed using the
javax.transaction.UserTransaction interface. Different types of components
access UserTransaction objects in different ways:

• Enterprise beans provide a mechanism for JTA transactions to be started auto-
matically by their containers. Enterprise beans that use bean-managed transac-
tions (described in Section 2.3.3.3 on page 39) use the method
EJBContext.getUserTransaction to look up the UserTransaction object.

• Applets and application clients may or may not be able to directly access a
UserTransaction object depending on the capabilities provided by the con-
tainer. However, they can always invoke enterprise beans that use a
UserTransaction object.

• Web components use JNDI to look up the UserTransaction object.

A resource manager local transaction is created and managed in a manner spe-
cific to a particular connection. For example, each SQL statement executed on a
JDBC connection has its own transaction.

2.3.3.2 Web Component Transactions

Web components (JSP pages and servlets) are not designed to be transactional.
Because of this, application component providers should only perform transactional
work directly in Web components on a very limited basis. Preferably, an application
component provider should delegate transactional work to the appropriate enterprise
beans. When an enterprise bean is used to perform transactional work, the enterprise
bean or container takes care of properly setting up the transaction.

Nevertheless, there are times when a Web component may need to directly
demarcate transactions. It can do so using the
javax.transaction.UserTransaction interface. You should, however, be aware
of limitations in transaction propagation and state isolation, as described in the
following discussions.

PLATFORM SERVICES 39

DEA2e.book Page 39 Friday, March 8, 2002 12:31 AM
2.3.3.2.1 Transaction Propagation

Transactions are propagated from a Web component to an enterprise bean only
when the Web component starts the transaction using the UserTransaction inter-
face. Since Web components are server-side components, Web browsers and other
clients don’t have direct access to transactions, so a transaction initiated by a Web
component cannot be propagated from the client of the component or between Web
components and transactional resources such as JDBC connections.

2.3.3.2.2 State Isolation

A Web component can keep state for the lifetime of a client session or component.
However, because Web components are not transactional components, their state
cannot be isolated based on transactions. For example, separate servlets will see the
same state of a client session even if they each start their own transaction.

2.3.3.3 Enterprise Bean Transactions

The J2EE platform provides two styles of transaction demarcation for enterprise
beans: bean-managed and container-managed.

With bean-managed transaction demarcation, the enterprise bean is required
to manage all aspects of a transaction. This entails operations such as:

• Creating the transaction object

• Explicitly starting the transaction

• Completing the transaction, either by committing the transaction when all up-
dates are completed or rolling back the transaction if an error occurs

With container-managed transaction demarcation, the EJB container handles
transaction management. The container performs the transaction demarcation
based on the application assembler’s deployment instructions; it handles starting
and ending the transaction and maintaining the transaction context throughout the
life of the transaction object. This greatly simplifies an application component
provider’s responsibilities and tasks, especially for transactions in distributed
environments.

Both stateful and stateless session beans can use either container- or bean-
managed transactions. However, a bean cannot use both types of transaction at the
same time. The application component provider decides the type of transaction
demarcation that a session bean will use and declares the transaction style via

CHAPTER 2 J2EE PLATFORM TECHNOLOGIES40

DEA2e.book Page 40 Friday, March 8, 2002 12:31 AM
attributes in the enterprise bean’s deployment descriptor. The attributes indicate
whether the bean or container will manage the bean’s transactions and, if the
latter, how the container will manage the transactions. Entity beans can only use
container-managed transaction demarcation.

2.3.4 Security Services

J2EE platform security services are designed to ensure that resources are accessed
only by users authorized to use them. Access control involves two steps:

1. Authentication—An entity must establish its identity through authentication.
It typically does so by providing authentication data (such as a name and pass-
word). An entity that can be authenticated is called a principal. A principal can
be a user or another program. Users are typically authenticated by logging in.

2. Authorization—When an authenticated principal tries to access a resource,
the system determines whether the principal is authorized to do so based on the
security policies in force in the application’s security policy domain.

The following sections give an overview of J2EE platform security services.
Security services are discussed in detail in Chapter 9.

2.3.4.1 Security Methodologies

Containers provide two security methodologies: declarative and programmatic.
Declarative security refers to the means of specifying an application’s security
structure in a form external to the application. An application component provider
specifies declarative security in a component’s deployment descriptor. Program-
matic security refers to security mechanisms accessed within a program. An appli-
cation component provider accesses programmatic security for EJB and Web
components with J2EE platform security APIs.

2.3.4.2 Authentication

The J2EE platform allows an application component provider to choose how a prin-
cipal is authenticated. A Web client can provide authentication data to a Web con-
tainer using HTTP basic authentication, digest authentication, form-based
authentication, or certificate authentication.

PLATFORM SERVICES 41

DEA2e.book Page 41 Friday, March 8, 2002 12:31 AM
With basic authentication, the Web server authenticates a principal using the
user name and password obtained from the Web client. Like basic authentication,
digest authentication authenticates a user based on a user name and a password.
However, the authentication is performed by transmitting the password in an
encrypted form, which is much more secure than the simple base64 encoding used
by basic authentication. With form-based authentication, the Web container can
provide an application-specific form for logging in. With certificate authentica-
tion, the client uses a public key certificate to establish its identity and maintains
its own security context.

There is no way to authenticate to an EJB container. However, authentication
data is also often required when an enterprise bean accesses an external resource.
An enterprise bean can provide authentication data to a resource directly, or it can
request the container to perform this service for it. If the application component
provider specifies that the container should propagate authentication data, the
deployer specifies the authentication data for each resource factory reference
declared by the enterprise bean. The container uses this authentication data when
obtaining a connection to the resource.

2.3.4.3 Authorization

J2EE platform authorization is based on the concept of security roles. A security
role is a logical grouping of users defined by an application component provider or
application assembler. Each security role is mapped by a deployer to principals in
the deployment environment. A security role can be used with declarative security
or programmatic security.

An application component provider or application assembler can control
access to an enterprise bean’s methods by specifying the method-permission

element in the bean’s deployment descriptor. The method-permission element
contains a list of methods that can be accessed by a given security role. If a princi-
pal is in a security role allowed access to a method, the principal may execute the
method. Similarly, a principal is allowed access to a Web component only if the
principal is in the appropriate security role. An application component provider
controls access programmatically by using the EJBContext.isCallerInRole or
HttpServletRequest.isRemoteUserInRole methods.

For example, suppose a payroll application specifies two security roles:
employee and administrator. Salary update operations are executable only by a
principal acting in the role of administrator, but salary read operations are exe-
cutable by both employee and administrator roles. When the payroll application

CHAPTER 2 J2EE PLATFORM TECHNOLOGIES42

DEA2e.book Page 42 Friday, March 8, 2002 12:31 AM
is deployed, the deployer provides a mapping between the set of administrator and
employee principals (or groups) and their respective roles. When the salary update
method is executed, the enterprise bean’s container can check whether the princi-
pal or group propagated from the Web server is in a role that can execute that
method. Alternatively, the method itself could use one of the security APIs to
perform the check.

2.3.4.4 Java Authentication and Authorization Services

Java Authentication and Authorization Services (JAAS) enables an application to
enforce access controls for authenticated users. It is based on the standard Pluggable
Authentication Module (PAM) framework and supports user-based authorization.
JAAS provides a framework and standard programming interface for authenticating
users and for assigning privileges. Java applications using JAAS can provide both
code-centric and user-centric access control. JAAS supports single sig-non and pro-
vides a flexible access control policy for user-based, group-based, and role-based
authorization.

2.4 Service Technologies

The J2EE platform service technologies allow applications to access a wide range of
services in a uniform manner. This section describes technologies that provide
access to databases, transactions, XML processing, naming and directory services,
and enterprise information systems.

2.4.1 JDBC API

The JDBC API provides database-independent connectivity between the J2EE
platform and a wide range of tabular data sources. JDBC technology allows an
application component provider to:

• Perform connection and authentication to a database server

• Manage transactions

• Move SQL statements to a database engine for preprocessing and execution

• Execute stored procedures

• Inspect and modify the results from Select statements

SERVICE TECHNOLOGIES 43

DEA2e.book Page 43 Friday, March 8, 2002 12:31 AM
The J2EE platform requires both the JDBC 2.0 Core API (included in the
J2SE platform), and the JDBC 2.0 Extension API, which provides row sets, con-
nection naming via JNDI, connection pooling, and distributed transaction support.
The connection pooling and distributed transaction features are intended for use
by JDBC drivers to coordinate with a J2EE server. Access to databases and enter-
prise information systems is covered in detail in Chapter 6.

2.4.2 Java Transaction API and Service

The Java Transaction API (JTA) allows applications to access transactions in a
manner that is independent of specific implementations. JTA specifies standard Java
interfaces between a transaction manager and the parties involved in a distributed
transaction system: the transactional application, the J2EE server, and the manager
that controls access to the shared resources affected by the transactions.

The Java Transaction Service (JTS) specifies the implementation of a transac-
tion manager that supports JTA and implements the Java mapping of the Object
Management Group Object Transaction Service 1.1 specification. A JTS transac-
tion manager provides the services and management functions required to support
transaction demarcation, transactional resource management, synchronization,
and propagation of information that is specific to a particular transaction instance.

2.4.3 Java Naming and Directory Interface

The Java Naming and Directory Interface™ (JNDI) API provides naming and direc-
tory functionality. It provides applications with methods for performing standard
directory operations, such as associating attributes with objects and searching for
objects using their attributes. Using JNDI, an application can store and retrieve any
type of named Java object.

Because JNDI is independent of any specific implementations, applications
can use JNDI to access multiple naming and directory services, including existing
naming and directory services such as LDAP, NDS, DNS, and NIS. This allows
applications to coexist with legacy applications and systems.

2.4.4 J2EE Connector Architecture

The J2EE Connector architecture is a standard API for connecting the J2EE plat-
form to enterprise information systems, such as enterprise resource planning, main-
frame transaction processing, and database systems. The architecture addresses the
issues involved when integrating existing enterprise information systems (EIS), such

CHAPTER 2 J2EE PLATFORM TECHNOLOGIES44

DEA2e.book Page 44 Friday, March 8, 2002 12:31 AM
as SAP, CICS, legacy applications, and nonrelational databases, with an EJB server
and enterprise applications. The J2EE Connector architecture defines a set of scal-
able, secure, and transactional mechanisms for integrating an EIS with a J2EE plat-
form. Adhering to the architecture simplifies this integration, enabling J2EE
applications to use the strengths of the J2EE platform along with existing data in
EISs.

The J2EE Connector architecture:

• Defines system contracts between J2EE-compliant application servers and re-
source adapters. Resource adapters, which are system libraries specific to an
EIS, provide connectivity between J2EE application components and an EIS.
Adapters are analogous to JDBC drivers for relational databases.

• Defines a common set of APIs so that Java applications and tools vendors can
connect to and use an EIS through its resource adapters.

• Defines a standard packaging and deployment facility for resource adapters to
facilitate their deployment in a J2EE environment.

To use the J2EE Connector architecture, an enterprise information system
vendor provides a resource adapter for its EIS. The adapter is then either deployed
as a separate module in the J2EE server or packaged and deployed along with the
J2EE application. The EIS provider develops the resource adapter following the
Connector architecture specification; it can be used on all J2EE platforms. Simi-
larly, an application developed using the Connector API is deployable on all J2EE
platforms that have the resource adapter for the EIS used by the application.

2.4.5 Java API for XML Processing Technology

The Java API for XML Processing (JAXP) technology supports the processing of
XML documents using DOM, SAX, and XSLT. JAXP enables applications to parse
and transform XML documents independent of a particular XML processing imple-
mentation. Depending on the needs of the application, developers have the flexibil-
ity to swap between XML processors, such as between high-performance or
memory-conservative parsers, with no application code changes.

COMMUNICATION TECHNOLOGIES 45

DEA2e.book Page 45 Friday, March 8, 2002 12:31 AM
2.5 Communication Technologies

Communication technologies provide mechanisms for communication between
clients and servers and between collaborating objects hosted by different servers.
The J2EE specification requires support for the following types of communication
technologies:

• Internet protocols

• Remote method invocation protocols

• Object Management Group protocols

• Messaging technologies

• Data formats

The following sections give an overview of J2EE platform communication tech-
nologies. Chapter 3 discusses how these communication technologies are used by
clients.

2.5.1 Internet Protocols

Internet protocols define the standards by which the different pieces of the J2EE
platform communicate with each other and with remote entities. The J2EE platform
supports the following Internet protocols:

• TCP/IP—Transport Control Protocol over Internet Protocol. These two proto-
cols provide for the reliable delivery of streams of data from one host to anoth-
er. Internet Protocol (IP), the basic protocol of the Internet, enables the
unreliable delivery of individual packets from one host to another. IP makes no
guarantees as to whether the packet will be delivered, how long it will take, or
if multiple packets will arrive in the order they were sent. The Transport Con-
trol Protocol (TCP) adds the notions of connection and reliability.

• HTTP 1.0—Hypertext Transfer Protocol. The Internet protocol used to fetch
hypertext objects from remote hosts. HTTP messages consist of requests from
client to server and responses from server to client.

• SSL 3.0—Secure Socket Layer. A security protocol that provides privacy over
the Internet. The protocol allows client-server applications to communicate in

CHAPTER 2 J2EE PLATFORM TECHNOLOGIES46

DEA2e.book Page 46 Friday, March 8, 2002 12:31 AM
a way that cannot be eavesdropped or tampered with. Servers are always au-
thenticated and clients are optionally authenticated.

2.5.2 Remote Method Invocation Protocols

Remote Method Invocation (RMI) is a set of APIs that allow developers to build dis-
tributed applications in the Java programming language. RMI uses Java language
interfaces to define remote objects and a combination of Java serialization technol-
ogy and the Java Remote Method Protocol (JRMP) to turn local method invocations
into remote method invocations. The J2EE platform supports the JRMP protocol,
the transport mechanism for communication between objects in the Java language in
different address spaces.

2.5.3 Object Management Group Protocols

Object Management Group (OMG) protocols allow objects hosted by the J2EE plat-
form to access remote objects developed using the OMG’s Common Object Request
Broker Architecture (CORBA) technologies and vice versa. CORBA objects are
defined using the Interface Definition Language (IDL). An application component
provider defines the interface of a remote object in IDL and then uses an IDL com-
piler to generate client and server stubs that connect object implementations to an
Object Request Broker (ORB), a library that enables CORBA objects to locate and
communicate with one another. ORBs communicate with each other using the Inter-
net Inter-ORB Protocol (IIOP). The OMG technologies required by the J2EE plat-
form are Java IDL and RMI-IIOP.

2.5.3.1 Java IDL

Java IDL allows Java clients to invoke operations on CORBA objects that have been
defined using IDL and implemented in any language with a CORBA mapping. Java
IDL is part of the J2SE platform. It consists of a CORBA API and ORB. An appli-
cation component provider uses the idlj IDL compiler to generate a Java client stub
for a CORBA object defined in IDL. The Java client is linked with the stub and uses
the CORBA API to access the CORBA object.

2.5.3.2 RMI-IIOP

RMI-IIOP is an implementation of the RMI API over IIOP. RMI-IIOP allows appli-
cation component providers to write remote interfaces in the Java programming lan-

COMMUNICATION TECHNOLOGIES 47

DEA2e.book Page 47 Friday, March 8, 2002 12:31 AM
guage. The remote interface can be converted to IDL and implemented in any other
language that is supported by an OMG mapping and an ORB for that language.
Clients and servers can be written in any language using IDL derived from the RMI
interfaces. When remote interfaces are defined as Java RMI interfaces, RMI over
IIOP provides interoperability with CORBA objects implemented in any language.
RMI-IIOP contains:

• The rmic compiler, which generates:

■ Client and server stubs that work with any ORB.

■ An IDL file compatible with the RMI interface. To create a C++ server ob-
ject, an application component provider would use an IDL compiler to pro-
duce the server stub and skeleton for the server object.

• A CORBA API and ORB.

Application clients must use RMI-IIOP to communicate with enterprise
beans.

2.5.4 Messaging Technologies

Messaging technologies provide a way to asynchronously send and receive mes-
sages. The Java Message Service API provides an interface for handling asynchro-
nous requests, reports, or events that are consumed by enterprise applications. JMS
messages are used to coordinate these applications. The JavaMailTM API provides an
interface for sending and receiving messages intended for users. Although either
API can be used for asynchronous notification, JMS is preferred when speed and
reliability are a primary requirement.

2.5.4.1 Java Message Service API

The Java Message Service (JMS) API allows J2EE applications to access enter-
prise messaging systems such as IBM MQ Series and TIBCO Rendezvous. JMS
messages contain well-defined information that describe specific business actions.
Through the exchange of these messages, applications track the progress of enter-
prise activities. The JMS API supports both point-to-point and publish-subscribe
styles of messaging.

In point-to-point messaging, a client sends a message to the message queue of
another client. Often a client will have all its messages delivered to a single queue.

CHAPTER 2 J2EE PLATFORM TECHNOLOGIES48

DEA2e.book Page 48 Friday, March 8, 2002 12:31 AM
Most queues are created administratively and are treated as static resources by
their clients.

In publish-subscribe messaging, clients publish messages to and subscribe to
messages from well-known nodes in a content-based hierarchy called topics. A
topic can be thought of as a message broker that gathers and distributes messages
addressed to it. By relying on the topic as an intermediary, message publishers are
independent of subscribers and vice-versa. The topic automatically adapts as both
publishers and subscribers come and go. Publishers and subscribers are active
when the objects that represent them exist. JMS also supports the optional dura-
bility of subscribers that “remember” the existence of the subscribers while they
are inactive.

The JMS API definitions must be included in a J2EE product, but a product is
not required to include an implementation of the JMS ConnectionFactory and
Destination objects. These are the objects used by an application to access a JMS
service provider. A future version of the J2EE platform will require that a J2EE
product provide support for both JMS point-to-point and publish-subscribe mes-
saging, and thus must make those facilities available using the
ConnectionFactory and Destination APIs.

2.5.4.2 JavaMail API

The JavaMail API provides a set of abstract classes and interfaces that comprise an
electronic mail system. The abstract classes and interfaces support many different
implementations of message stores, formats, and transports. Many simple applica-
tions will only need to interact with the messaging system through these base
classes and interfaces.

The abstract classes in the JavaMail API can be subclassed to provide new pro-
tocols and add functionality when necessary. In addition, JavaMail API includes
concrete subclasses that implement widely used Internet mail protocols and
conform to specifications RFC822 and RFC2045. They are ready to be used in
application development. Developers can subclass JavaMail classes to provide the
implementations of particular messaging systems, such as IMAP4, POP3, and
SMTP.

2.5.4.2.1 JavaBeans Activation Framework API

The JavaBeans Activation Framework (JAF) API integrates support for MIME data
types into the Java platform. JavaBeans components can be specified for operating

COMMUNICATION TECHNOLOGIES 49

DEA2e.book Page 49 Friday, March 8, 2002 12:31 AM
on MIME data, such as viewing or editing the data. The JAF API also provides a
mechanism to map filename extensions to MIME types.

The JAF API is used by the JavaMail API to handle the data included in
e-mail messages; typical applications will not need to use the JAF API directly,
although applications making sophisticated use of e-mail may need it.

2.5.5 Data Formats

Data formats define the types of data that can be exchanged between components.
The J2EE platform requires support for the following data formats:

• HTML 3.2—The markup language used to define hypertext documents acces-
sible over the Internet. HTML enables the embedding of images, sounds, video
streams, form fields, references to other HTML documents, and basic text for-
matting. HTML documents have a globally unique location and can link to one
another.

• Image files—The J2EE platform supports two formats for image files: GIF
(Graphics Interchange Format), a protocol for the online transmission and in-
terchange of raster graphic data, and JPEG (Joint Photographic Experts
Group), a standard for compressing gray-scale or color still images.

• JAR file—A platform-independent file format that permits many files to be
aggregated into one file.

• Class file—The format of a compiled Java file as specified in the Java Virtual
Machine specification. Each class file contains one Java language type—either
a class or an interface—and consists of a stream of 8-bit bytes.

• XML—A text-based markup language that allows you to define the markup
needed to identify the data and text in structured documents. As with HTML,
you identify data using tags. But unlike HTML, XML tags describe the data,
rather than the format for displaying it. In the same way that you define the
field names for a data structure, you are free to use any XML tags that make
sense for a given application. When multiple applications share XML data,
they have to agree on the tag names they intend to use.

CHAPTER 2 J2EE PLATFORM TECHNOLOGIES50

DEA2e.book Page 50 Friday, March 8, 2002 12:31 AM
2.6 Summary

The primary focus of the Java 2 Platform, Enterprise Edition is a set of component
technologies (Enterprise JavaBeans technology, JavaServer Pages technology, and
Java servlets technology) that simplify the process of developing enterprise applica-
tions. The J2EE platform provides a number of system-level services that simplify
application programming and allow components to be customized to use resources
available in the environment in which they are deployed. In conjunction with the
component technologies, the J2EE platform provides APIs that enable compo-
nents to access a variety of remote services, and mechanisms for communication
between clients and servers and between collaborating objects hosted by different
servers.

2.7 References and Resources

• Java Web Start Web site <http://java.sun.com/products/javawebstart>

• Java Authentication and Authorization Service Web site
<http://java.sun.com/products/jaas>

• J2EE 1.3 Platform Specification <http://java.sun.com/j2ee>

DEA2e.book Page 51 Friday, March 8, 2002 12:31 AM
C H A P T E R 3

The Client Tier

by Ray Ortigas

FROM a developer’s point of view, a J2EE application can support many types of
clients. J2EE clients can run on laptops, desktops, palmtops, and cell phones. They
can connect from within an enterprise’s intranet or across the World Wide Web,
through a wired network or a wireless network or a combination of both. They can
range from something thin, browser-based and largely server-dependent to some-
thing rich, programmable, and largely self-sufficient.

From a user’s point of view, the client is the application. It must be useful,
usable, and responsive. Because the user places high expectations on the client,
you must choose your client strategy carefully, making sure to consider both tech-
nical forces (such as the network) and non-technical forces (such as the nature of
the application). This chapter presents guidelines for designing and implementing
J2EE clients amidst these competing forces.

This chapter cites examples from the Java Pet Store sample application, an
online outlet for selling pets, and the Java Smart Ticket sample application, an e-
commerce movie ticket service. The code for these sample applications is avail-
able on the Java BluePrints Web site. See “References and Resources” on page 73
for more information.

3.1 Client Considerations

Every application has requirements and expectations that its clients must meet, con-
strained by the environment in which the client needs to operate.

Your users and their usage patterns largely determine what type of client or
interface you need to provide. For example, desktop Web browser clients are
51

CHAPTER 3 THE CLIENT TIER52

DEA2e.book Page 52 Friday, March 8, 2002 12:31 AM
popular for e-mail and e-shopping because they provide a familiar interface. For
another example, wireless handheld clients are useful for sales force automation
because they provide a convenient way to access enterprise resources from the
field in real time. Once you have decided what type of interface you need, you
should design your client configuration with network, security, and platform con-
siderations in mind.

3.1.1 Network Considerations

J2EE clients may connect to the enterprise over a wide array of networks. The
quality of service on these networks can vary tremendously, from excellent on a
company intranet, to modest over a dialup Internet connection, to poor on a wireless
network. The connectivity can also vary; intranet clients are always connected,
while mobile clients experience intermittent connectivity (and are usually online for
short periods of time anyway).

Regardless of the quality of service available, you should always keep in mind
that the client depends on the network, and the network is imperfect. Although the
client appears to be a stand-alone entity, it cannot be programmed as such because
it is part of a distributed application. Three aspects of the network deserve particu-
lar mention:

• Latency is non-zero.

• Bandwidth is finite.

• The network is not always reliable.

A well-designed enterprise application must address these issues, starting
with the client. The ideal client connects to the server only when it has to, trans-
mits only as much data as it needs to, and works reasonably well when it cannot
reach the server. Later, this chapter elaborates on strategies for achieving those
goals.

3.1.2 Security Considerations

Different networks have different security requirements, which constrain how
clients connect to an enterprise. For example, when clients connect over the Internet,
they usually communicate with servers through a firewall. The presence of a firewall
that is not under your control limits the choices of protocols the client can use. Most
firewalls are configured to allow Hypertext Transfer Protocol (HTTP) to pass across,

CLIENT CONSIDERATIONS 53

DEA2e.book Page 53 Friday, March 8, 2002 12:31 AM
but not Internet Inter-Orb Protocol (IIOP). This aspect of firewalls makes Web-
based services, which use HTTP, particularly attractive compared to RMI- or
CORBA-based services, which use IIOP.

Security requirements also affect user authentication. When the client and
server are in the same security domain, as might be the case on a company intra-
net, authenticating a user may be as simple as having the user log in only once to
obtain access to the entire enterprise, a scheme known as single sign on. When the
client and server are in different security domains, as would be the case over the
Internet, a more elaborate scheme is required for single sign on, such as that pro-
posed by the Liberty Alliance, an industry collaboration spearheaded by Sun
Microsystems.

The authentication process itself needs to be confidential and, usually, so does
the client-server communication after a user has been authenticated. Both the
J2EE platform and the client types discussed in this chapter have well-defined
mechanisms for ensuring confidentiality. These mechanisms are discussed in
Chapter 9.

3.1.3 Platform Considerations

Every client platform’s capabilities influence an application’s design. For example, a
browser client cannot generate graphs depicting financial projections; it would need
a server to render the graphs as images, which it could download from the server. A
programmable client, on the other hand, could download financial data from a server
and render graphs in its own interface.

Another aspect of the platform to consider is form factor. Desktop computers
offer a large screen, a keyboard, and a pointing device such as a mouse or track-
ball. With such clients, users are willing to view and manipulate large amounts of
data. In contrast, cell phones have tiny screens and rely on button-based interac-
tions (usually thumb-operated!). With such clients, users can’t (and don’t want to)
view or manipulate large amounts of data.

Applications serving multiple client platforms pose additional challenges.
Developing a client for each platform requires not only more resources for imple-
mentation, testing, and maintenance but also specialized knowledge of each plat-
form. It may be easier to develop one client for all platforms (using a browser- or
a Java technology-based solution, for example), but designing a truly portable
client requires developers to consider the lowest common denominator. Conse-
quently, such a client implementation cannot take advantage of the various capa-
bilities unique to each platform.

CHAPTER 3 THE CLIENT TIER54

DEA2e.book Page 54 Friday, March 8, 2002 12:31 AM
3.2 General Design Issues and Guidelines

While the J2EE platform encourages thin-client architectures, J2EE clients are not
dumb. A J2EE client may handle many responsibilities, including:

• Presenting the user interface—Although a client presents the views to a user,
the logic for the views may be programmed on the client or downloaded from
a server.

• Validating user inputs—Although the EIS and EJB tier must enforce con-
straints on model data (since they contain the data), a client may also enforce
data constraints by validating user inputs.

• Communicating with the server—When a user requests functionality that re-
sides on a server, the user’s client must present that request to the server using
a protocol they both understand.

• Managing conversational state—Applications need to track information as a
user goes through a workflow or process (effectively conversing with the ap-
plication). The client may track none, some, or all of this information, known
as conversational state.

How you handle these responsibilities on your client can significantly impact
your development efforts, your application’s performance, and your users’ experi-
ence. Generally, the more responsibilities you place on the client, the more
responsive it will be.

The next two sections consider browser clients and Java clients separately.
You do not have to pick one or the other; a J2EE application can accommodate
both browser and Java clients. The Java Pet Store sample application, for example,
has a Web browser interface for shoppers and a Java application for administra-
tors. Section 4.4.2.2 on page 107 explains how to design the Web tier to support
multiple types of clients.

3.3 Design Issues and Guidelines for Browser Clients

Browsers are the thinnest of clients; they display data to their users and rely on
servers for application functionality.

From a deployment perspective, browser clients are attractive for a couple of
reasons. First, they require minimal updating. When an application changes,

DESIGN ISSUES AND GUIDELINES FOR BROWSER CLIENTS 55

DEA2e.book Page 55 Friday, March 8, 2002 12:31 AM
server-side code has to change, but browsers are almost always unaffected.
Second, they are ubiquitous. Almost every computer has a Web browser and many
mobile devices have a microbrowser.

This section documents the issues behind designing and implementing
browser clients.

3.3.1 Presenting the User Interface

Browser clients download documents from a server. These documents contain data
as well as instructions for presenting that data. The documents are usually dynami-
cally generated by JSP pages (and less often by Java servlets) and written in a pre-
sentational markup language such as Hypertext Markup Language (HTML). A
presentational markup language allows a single document to have a reasonable pre-
sentation regardless of the browser that presents it. These screenshots in Figure 3.1
show the Java Pet Store sample application running in two different browsers.

Figure 3.1 Java Pet Store Sample Application Shopping Client Rendered by Two
Different Browsers

There are other alternatives to HTML, particularly for mobile devices, whose
presentation capabilities tend to differ from those of a traditional desktop computer.
Examples include Wireless Markup Language (WML), Compact HTML
(CHTML), Extensible HTML (XHTML) Basic, and Voice Markup Language
(VoiceML).

Browsers have a couple of strengths that make them viable enterprise applica-
tion clients. First, they offer a familiar environment. Browsers are widely
deployed and used, and the interactions they offer are fairly standard. This makes
browsers popular, particularly with novice users. Second, browser clients can be
easy to implement. The markup languages that browsers use provide high-level

CHAPTER 3 THE CLIENT TIER56

DEA2e.book Page 56 Friday, March 8, 2002 12:31 AM
abstractions for how data is presented, leaving the mechanics of presentation and
event-handling to the browser.

The trade-off of using a simple markup language, however, is that markup lan-
guages allow only limited interactivity. For example, HTML’s tags permit presenta-
tions and interactions that make sense only for hyperlinked documents. You can
enhance HTML documents slightly using technologies such as JavaScript in combi-
nation with other standards, such as Cascading Style Sheets (CSS) and the Docu-
ment Object Model (DOM). However, support for these documents, also known as
Dynamic HTML (DHTML) documents, is inconsistent across browsers, so creating
a portable DHTML-based client is difficult.

Another, more significant cost of using browser clients is potentially low
responsiveness. The client depends on the server for presentation logic, so it must
connect to the server whenever its interface changes. Consequently, browser
clients make many connections to the server, which is a problem when latency is
high. Furthermore, because the responses to a browser intermingle presentation
logic with data, they can be large, consuming substantial bandwidth.

3.3.2 Validating User Inputs

Consider an HTML form for completing an order, which includes fields for credit
card information. A browser cannot single-handedly validate this information, but it
can certainly apply some simple heuristics to determine whether the information is
invalid. For example, it can check that the cardholder name is not null, or that the
credit card number has the right number of digits. When the browser solves these
obvious problems, it can pass the information to the server. The server can deal with
more esoteric tasks, such as checking that the credit card number really belongs to
the given cardholder or that the cardholder has enough credit.

When using an HTML browser client, you can use the JavaScript scripting
language, whose syntax is close to that of the Java programming language. Be
aware that JavaScript implementations vary slightly from browser to browser; to
accommodate multiple types of browsers, use a subset of JavaScript that you
know will work across these browsers. (For more information, see the ECMA-
Script Language Specification.) It may help to use JSP custom tags that autoge-
nerate simple JavaScript that is known to be portable.

Code Example 3.1 shows how to validate a Web form using Java-Script’s
DOM hooks to access the form’s elements. For example, suppose you have a form
for creating an account. When the user submits the form, it can call a JavaScript
function to validate the form.

DESIGN ISSUES AND GUIDELINES FOR BROWSER CLIENTS 57

DEA2e.book Page 57 Friday, March 8, 2002 12:31 AM
<form name="account_form" method="POST"

action="http://acme.sun.com/create_account"

onSubmit="return

checkFamilyName();">

<p>Family name: <input type="text" name="family_name"></p>

<!- ... -->

<p><input type="submit" value="Send it!" /></p>

</form>

Code Example 3.1 HTML Form Calling a JavaScriptValidation Function

Code Example 3.2 shows how the JavaScript validation function might be
implemented.

<script language="JavaScript">

<!--

function checkFamilyName() {

var familyName =

window.document.account_form.family_name.value;

if (familyName == "") {

alert("You didn't enter a family name.");

return false;

}

else {

return true;

}

}

-->

</script>

Code Example 3.2 JavaScript Validation Function Using DOM Hooks

Validating user inputs with a browser does not necessarily improve the
responsiveness of the interface. Although the validation code allows the client to
instantly report any errors it detects, the client consumes more bandwidth because
it must download the code in addition to an HTML form. For a non-trivial form,
the amount of validation code downloaded can be significant. To reduce download

CHAPTER 3 THE CLIENT TIER58

DEA2e.book Page 58 Friday, March 8, 2002 12:31 AM
time, you can place commonly-used validation functions in a separate source file
and use the SCRIPT element’s SRC attribute to reference this file. When a browser
sees the SRC attribute, it will cache the source file, so that the next time it encoun-
ters another page using the same source file, it will not have to download it again.

Also note that implementing browser validation logic will duplicate some
server-side validation logic. The EJB and EIS tiers should validate data regardless
of what the client does. Client-side validation is an optimization; it improves user
experience and decreases load, but you should never rely on the client exclusively
to enforce data consistency.

3.3.3 Communicating with the Server

Browser clients connect to a J2EE application over the Web, and hence they use
HTTP as the transport protocol.

When using browser interfaces, users generally interact with an application by
clicking hyperlinked text or images, and completing and submitting forms.
Browser clients translate these gestures into HTTP requests for a Web server,
since the server provides most, if not all, of an application’s functionality.

User requests to retrieve data from the server normally map to HTTP GET
requests. The URLs of the requests sometimes include parameters in a query
string that qualify what data should be retrieved. For example, a URL for listing
all dogs might be written as follows:

http://javapetstore.sun.com/product.screen?category_id=DOGS

User requests to update data on the server normally map to HTTP POST
requests. Each of these requests includes a MIME envelope of type
application/x-www-form-urlencoded, containing parameters for the update. For
example, a POST request to complete an order might use the URL:

http://javapetstore.sun.com/cart.do

The body of the request might include the following line:

action=add&itemId=EST-27

The servlet API provides a simple interface for handling incoming GET and
POST requests and for extracting any parameters sent along with the requests.

DESIGN ISSUES AND GUIDELINES FOR BROWSER CLIENTS 59

DEA2e.book Page 59 Friday, March 8, 2002 12:31 AM
Section 4.4.2 on page 98 describes strategies for handling requests and translating
these requests into events on your application model.

After a server handles a client request, it must send back an HTTP response;
the response usually contains an HTML document. A J2EE application should use
JSP pages to generate HTML documents; for more information on using JSP
pages effectively, see Section 4.2.6.4 on page 86.

Security is another important aspect of client-server communication. Section
9.2.2 on page 284 covers authentication mechanisms and Section 9.4.2 on page
305 covers confidentiality mechanisms.

3.3.4 Managing Conversational State

Because HTTP is a request-response protocol, individual requests are treated
independently. Consequently, Web-based enterprise applications need a mecha-
nism for identifying a particular client and the state of any conversation it is
having with that client.

The HTTP State Management Mechanism specification introduces the notion
of a session and session state. A session is a short-lived sequence of service
requests by a single user using a single client to access a server. Session state is
the information maintained in the session across requests. For example, a shop-
ping cart uses session state to track selections as a user chooses items from a cata-
log. Browsers have two mechanisms for caching session state: cookies and URL
rewriting.

• A cookie is a small chunk of data the server sends for storage on the client.
Each time the client sends information to a server, it includes in its request the
headers for all the cookies it has received from that server. Unfortunately,
cookie support is inconsistent enough to be annoying: some users disable
cookies, some firewalls and gateways filter them, and some browsers do not
support them. Furthermore, you can store only small amounts of data in a
cookie; to be portable across all browsers, you should use four kilobytes at
most.

• URL rewriting involves encoding session state within a URL, so that when the
user makes a request on the URL, the session state is sent back to the server.
This technique works almost everywhere, and can be a useful fallback when
you cannot use cookies. Unfortunately, pages containing rewritten URLs con-
sume much bandwidth. For each request the server receives, it must rewrite

CHAPTER 3 THE CLIENT TIER60

DEA2e.book Page 60 Friday, March 8, 2002 12:31 AM
every URL in its response (the HTML page), thereby increasing the size of the
response sent back to the client.

Both cookies and pages containing rewritten URLs are vulnerable to unautho-
rized access. Browsers usually retain cookies and pages in the local file system, so
any sensitive information (passwords, contact information, credit card numbers,
etc.) they contain is vulnerable to abuse by anyone else who can access this data.
Encrypting the data stored on the client might solve this problem, as long as the
data is not intended for display.

Because of the limitations of caching session state on browser clients, these
clients should not maintain session state. Rather, servers should manage session
state for browsers. Under this arrangement, a server sends a browser client a key
that identifies session data (using cookies or URL rewriting), and the browser
sends the key back to the server whenever it wants to use the session data. If the
browser caches any information beyond a session key, it should be restricted to
items like the user’s login and preferences for using the site; such items do not
need to be manipulated, and they can be easily stored on the client.

3.4 Design Issues and Guidelines for Java Clients

Java clients can be divided into three categories: applications, applets, and MIDlets.
They all leverage the Java programming language and a small common set of Java
libraries, but they are deployed differently.

3.4.0.0.1 Application Clients

Application clients execute in the Java 2 Runtime Environment, Standard Edition
(JRE). They are very similar to the stand-alone applications that run on traditional
desktop computers. As such, they typically depend much less on servers than do
browsers.

Application clients are packaged inside JAR files and may be installed explic-
itly on a client’s machine or provisioned on demand using Java Web Start technol-
ogy. Preparing an application client for Java Web Start deployment involves
distributing its JAR with a Java Network Launching Protocol (JNLP) file. When a
user running Java Web Start requests the JNLP file (normally by clicking a link in
a Web browser), Java Web Start automatically downloads all necessary files. It
then caches the files so the user can relaunch the application without having to

DESIGN ISSUES AND GUIDELINES FOR JAVA CLIENTS 61

DEA2e.book Page 61 Friday, March 8, 2002 12:31 AM
download them again (unless they have changed, in which case Java Web Start
technology takes care of downloading the appropriate files).

For more information on Java Web Start and JNLP, see the Java Web Start
home page listed in “References and Resources” on page 73.

3.4.0.0.2 Applet Clients

Applet clients are user interface components that typically execute in a Web
browser, although they can execute in other applications or devices that support the
applet programming model. They are typically more dependent on a server than are
application clients, but are less dependent than browser clients.

Like application clients, applet clients are packaged inside JAR files. How-
ever, applets are typically executed using Java Plug-in technology. This technol-
ogy allows applets to be run using Sun’s implementation of the Java 2 Runtime
Environment, Standard Edition (instead of, say, a browser’s default JRE).

For more information on packaging applets, consult the Java Tutorial. For
more information on serving applets from JSP pages using Java Plug-in technol-
ogy, consult the J2EE Tutorial.

3.4.0.0.3 MIDlet Clients

MIDlet clients are small applications programmed to the Mobile Information
Device Profile (MIDP), a set of Java APIs which, together with the Connected
Limited Device Configuration (CLDC), provides a complete Java 2 Micro Edition
(J2ME) runtime environment for cellular phones, two-way pagers, and palmtops.

A MIDP application is packaged inside a JAR file, which contains the appli-
cation’s class and resource files. This JAR file may be pre-installed on a mobile
device or downloaded onto the device (usually over the air). Accompanying the
JAR file is a Java Application Descriptor (JAD) file, which describes the applica-
tion and any configurable application properties.

For a complete specification of a JAD file’s contents, as well as deploying
MIDP applications in general, see the J2ME Wireless Toolkit User’s Guide.

3.4.1 Presenting the User Interface

Although a Java client contains an application’s user interface, the presentation logic
behind this interface may come from a server, as it would for a browser, or it may be
programmed from the ground up on the client. In this section, we discuss the latter
case.

CHAPTER 3 THE CLIENT TIER62

DEA2e.book Page 62 Friday, March 8, 2002 12:31 AM
Java applet and application clients may use the Java Foundation Classes
(JFC)/Swing API, a comprehensive set of GUI components for desktop clients.
Java MIDlets, meanwhile, may use the MIDP User Interface API, a GUI toolkit
that is geared towards the limited input capabilities of today’s mobile information
devices. For example, Figure 3.2 shows the Java Smart Ticket sample application
using the MIDP UI API and running on a Palm IIIc emulator.

Figure 3.2 Java Smart Ticket Sample Application Client Running on a
Palm OS Device

Implementing the user interface for a Java client usually requires more effort
to implement than a browser interface, but the benefits are substantial. First, Java
client interfaces offer a richer user experience; with programmable GUI compo-
nents, you can create more natural interfaces for the task at hand. Second, and
perhaps more importantly, full programmability makes Java clients much more
responsive than browser interfaces.

DESIGN ISSUES AND GUIDELINES FOR JAVA CLIENTS 63

DEA2e.book Page 63 Friday, March 8, 2002 12:31 AM
When a Java client and a browser client request the same data, the Java client
consumes less bandwidth. For example, when a browser requests a list of orders
and a Java client requests the same list, the response is larger for the browser
because it includes presentation logic. The Java client, on the other hand, gets the
data and nothing more.

Furthermore, Java clients can be programmed to make fewer connections than
a browser to a server. For example, in the Java Pet Store sample application, an
administrator may view orders in a table and sort them by date, order identifier,
and so on. He or she may also see order data presented in a pie chart or a bar chart,
as shown in Figure 3.3.

Figure 3.3 Java Pet Store Sample Application Administrator Client Displaying Order
Data in Pie and Bar Charts Using the JFC/Swing API

Because the administrator client uses the JFC/Swing API, it can provide all of
these views from the same data set; once it retrieves the data, it does not have to
reconnect to the server (unless it wants to refresh its data). In contrast, an adminis-
trator client implemented using a browser must connect to the server each time the
view changes. Even though the data does not change, the browser has to download
a new view because the data and the view are intertwined.

For more information on programming JFC/Swing user interfaces, refer to the
JFC Swing Tutorial. For more information on programming MIDP user inter-
faces, read Programming Wireless Devices with the Java 2 Plaform, Micro
Edition.

CHAPTER 3 THE CLIENT TIER64

DEA2e.book Page 64 Friday, March 8, 2002 12:31 AM
3.4.2 Validating User Inputs

Like presentation logic, input validation logic may also be programmed on Java cli-
ents, which have more to gain than browser clients from client-side input validation.
Recall that browser clients have to trade off the benefit of fewer connections (from
detecting bad inputs before they get to the server) for the cost of using more band-
width (from downloading validation code from the server). In contrast, Java clients
realize a more responsive interface because they do not have to download validation
logic from the server.

With Java clients, it is straightforward to write input validation logic. You use
the Java programming language, as shown in Code Example 3.3 from the Java
Smart Ticket sample application:

public void validateAll() throws ApplicationException {

if (username.size() < 4) {

/* Complain about username being too short... */

}

if (password.size() < 6) {

/* Complain about password being too short... */

}

if (zipCode.size() != 5) {

/* Complain about ZIP code not having 5 characters... */

}

if (creditCard.size() != 12) {

/* Complain about credit card number not having

12 digits... */

}

}

Code Example 3.3 Java Smart Ticket Sample Application Code for Validating Inputs
in a User Account Form

For more sophisticated input validation on JFC/Swing clients, consider using
the InputVerifier class provided by the JFC/Swing framework. For more infor-
mation, see “References and Resources” on page 73.

Of course, the best way to reduce client-side validation requirements is to
make it impossible to enter bad data in the first place (especially if you are expect-
ing a value of an enumerated type). For example, using a text field to enter a date

DESIGN ISSUES AND GUIDELINES FOR JAVA CLIENTS 65

DEA2e.book Page 65 Friday, March 8, 2002 12:31 AM
is error-prone because a text field can receive many types of input. Providing a set
of drop-downs that contain valid months, days, and years might be an improve-
ment, but a user can still enter invalid input (such as Feb. 30). The best solution is
to provide a calendar widget that intelligently constrains what date is chosen, and
the only way to implement such a custom component is with a programmable
client.

3.4.3 Communicating with the Server

Java clients may connect to a J2EE application as Web clients (connecting to the
Web tier), EJB clients (connecting to the EJB tier), or EIS clients (connecting to the
EIS tier).

3.4.3.0.1 Web Clients

Like browser clients, Java Web clients connect over HTTP to the Web tier of a J2EE
application. This aspect of Web clients is particularly important on the Internet,
where HTTP communication is typically the only way a client can reach a server.
Many servers are separated from their clients by firewalls, and HTTP is one of the
few protocols most firewalls allow through.

Whereas browsers have built-in mechanisms that translate user gestures into
HTTP requests and interpret HTTP responses to update the view, Java clients
must be programmed to perform these actions. A key consideration when imple-
menting such actions is the format of the messages between client and server.

Unlike browser clients, Java clients may send and receive messages in any
format. For example, in the Java Smart Ticket sample application, a user may look
at a list of movies. If the user had a browser client, the list would have to be for-
matted in HTML before downloading it to the client. However, the Java client in
this demo downloads a plain binary string representing the list.

A Java client could use another format, such as comma-separated values:

1,Big and Badder,2,The Dot,4,Invasion of the Dots

Or, the client could use key-value pairs:

id=1,title="Big and Badder"

id=2,title="The Dot"

id=4,title="Invasion of the Dots"

CHAPTER 3 THE CLIENT TIER66

DEA2e.book Page 66 Friday, March 8, 2002 12:31 AM
Or, the client could use XML:

<movies>

<movie>

<id>1</id>

<title>Big and Badder</title>

</movie>

<movie>

<id>2</id>

<title>The Dot</title>

</movie>

<movie>

<id>4</id>

<title>Invasion of the Dots</title>

</movie>

</movies>

Although the possibilities are endless, you can think of message formats as
falling into a spectrum, with binary strings on one end and XML documents on
the other. To understand the tradeoffs of message formats in general, it helps to
consider these two extremes.

Binary messages consume little bandwidth. This aspect of binary messages is
especially attractive in low-bandwidth environments (such as wireless and dial-up
networks), where every byte counts. Code Example 3.4 illustrates how a Java
client might construct a binary request to log into an application.

static final int LOGIN_USER = 1;

// ...

HttpConnection c;

DataOutputStream out;

String username, password;

/* Construct the body of the HTTP POST request using out... */

out.write(LOGIN_USER);

out.writeUTF(username);

DESIGN ISSUES AND GUIDELINES FOR JAVA CLIENTS 67

DEA2e.book Page 67 Friday, March 8, 2002 12:31 AM
out.writeUTF(password);

/* Send the HTTP request... */

Code Example 3.4 Java Client Code for Sending a Binary Request

Code Example 3.5 illustrates how a Java servlet might listen for requests from
the Java client:

public void doPost(HttpServletRequest req,

HttpServletResponse resp) throws IOException, ServletException {

/* Interpret the request. */

DataInputStream in =

new DataInputStream(req.getInputStream());

int command = in.readInt();

resp.setContentType("application/binary");

DataOutputStream out =

new DataOutputStream(resp.getOutputStream());

byte command = in.read();

switch (command) {

case LOGIN_USER:

String username = in.readUTF();

String password = in.readUTF();

/* Check username and password against user database... */

}

}

Code Example 3.5 Java Servlet Code for Interpreting a Binary Request

These examples also illustrate a substantial cost of HTTP-based messaging in
general; you have to write code for parsing and interpreting messages. Unfortu-
nately, writing such code, especially for multiple programmable clients, can be
time-consuming and error-prone.

Java technologies for XML alleviate some of the burdens experienced with
binary messaging. These technologies, which include the Java API for XML Pro-
cessing (JAXP), automate the parsing and aid the construction of XML messages.

CHAPTER 3 THE CLIENT TIER68

DEA2e.book Page 68 Friday, March 8, 2002 12:31 AM
Messaging toolkits based on Java technology help interpret messages once they
are parsed; these toolkits implement open standards such as the Simple Object
Access Protocol (SOAP). The ability to parse and interpret messages automati-
cally reduces development time and helps maintenance and testing.

A side benefit of using XML messages is that alternate clients are easier to
support, as XML is a widely-accepted open standard. For example, StarOffice
Calc and Macromedia Flash clients could both read order data formatted in XML
from the same JSP page and present the data in their respective interfaces. Also,
you can use XML to encode messages from a variety of clients. A C++ client, for
example, could use a SOAP toolkit to make remote procedure calls (RPC) to a
J2EE application.

The most common models for XML processing are DOM and the Simple API
for XML (SAX). Unlike DOM, which provides an in-memory, tree-based data
structure for random access, SAX offers event-based serial access, which makes
processing messages faster. For more information on using XML effectively, see
“References and Resources” on page 73.

Like browser clients, Java Web clients carry out secure communication over
HTTPS. See Section 9.2.2 on page 284 for more information on Web authentica-
tion mechanisms and Section 9.4.2 on page 305 for more information on Web
confidentiality mechanisms.

3.4.3.0.2 EJB Clients

When using Web clients, you must write code for translating user gestures into
HTTP requests, HTTP requests into application events, event responses into HTTP
responses, and HTTP responses into view updates. On the other hand, when using
EJB clients, you do not need to write such code because the clients connect directly
to the EJB tier using Java Remote Method Invocation (RMI) calls.

Unfortunately, connecting as an EJB client is not always possible. First, only
applet and application clients may connect as EJB clients. (At this time, MIDlets
cannot connect to the EJB tier because RMI is not a native component of MIDP.)
Second, RMI calls are implemented using IIOP, and most firewalls usually block
communication using that protocol. So, when a firewall separates a server and its
clients, as would be the case over the Internet, using an EJB client is not an option.
However, you could use an EJB client within a company intranet, where firewalls
generally do not intervene between servers and clients.

When deploying an applet or application EJB client, you should distribute it
with a client-side container and install the container on the client machine. This
container (usually a class library) allows the client to access middle-tier services

DESIGN ISSUES AND GUIDELINES FOR JAVA CLIENTS 69

DEA2e.book Page 69 Friday, March 8, 2002 12:31 AM
(such as the JMS, JDBC, and JTA APIs) and is provided by the application server
vendor. However, the exact behavior for installing EJB clients is not completely
specified for the J2EE platform, so the client-side container and deployment
mechanisms for EJB clients vary slightly from application server to application
server.

Clients should be authenticated to access the EJB tier, and the client container
is responsible for providing the appropriate authentication mechanisms. For more
information on EJB client authentication, see Section 9.2.2.2 on page 287.

3.4.3.0.3 EIS Clients

Generally, Java clients should not connect directly to a J2EE application’s EIS tier.
EIS clients require a powerful interface, such as the JDBC API, to manipulate data
on a remote resource. When this interface is misused (by a buggy client you have
implemented or by a malicious client someone else has hacked or built from
scratch), your data can be compromised. Furthermore, non-trivial EIS clients must
implement business logic. Because the logic is attached to the client, it is harder to
share among multiple types of clients.

In some circumstances, it may be acceptable for clients to access the EIS tier
directly, such as for administration or management tasks, where the user interface
is small or nonexistent and the task is simple and well understood. For example, a
simple Java program could perform maintenance on database tables and be
invoked every night through an external mechanism.

3.4.4 Managing Conversational State

Whereas browser clients require a robust server-side mechanism for maintaining
session state, Java clients can manage session state on their own, because they can
cache and manipulate substantial amounts of state in memory. Consequently, Java
clients have the ability to work while disconnected, which is beneficial when latency
is high or when each connection consumes significant bandwidth.

To support a disconnected operation, a Java client must retrieve enough usable
data for the user before going offline. The initial cost of downloading such data
can be high, but you can reduce this cost by constraining what gets downloaded,
by filtering on user preferences, or requiring users to enter search queries at the
beginning of each session. Many applications for mobile devices already use such
strategies; they also apply well to Java clients in general.

For example, you could extend the Java Smart Ticket sample application to
allow users to download movie listings onto their phones. To reduce the size of the

CHAPTER 3 THE CLIENT TIER70

DEA2e.book Page 70 Friday, March 8, 2002 12:31 AM
listings, you could allow users to filter on simple criteria such as genre (some
users may not be in the mood for drama) or ZIP code (some users may only want
to go to movie theaters within 10 miles of where they live). Users could then
browse the personalized lists on their phones without needing to connect to the
server until they want to buy a ticket.

Also note that the movie listings are candidates for persistence on the client,
since they are updated infrequently, perhaps once every week. The Java Smart
Ticket sample application client uses the MIDP Record Management Store (RMS)
API to store data locally. Application clients, meanwhile, can use either local files
(assuming they have permission) or the Java Native Launching Protocol and API
(JNLP) persistence service. (Applets have very limited local storage because they
normally use a browser’s cookie store, although they can request permission to
use local files as well.)

Figure 3.4 Java Smart Ticket Sample Application Listing Movie Information
Downloaded onto the Phone

The example of downloading movie listings illustrates a read-only interaction.
The client retrieves data from the server, caches it, and does not modify the cached
data. There may be times, however, when a Java client needs to update data it

DESIGN ISSUES AND GUIDELINES FOR JAVA CLIENTS 71

DEA2e.book Page 71 Friday, March 8, 2002 12:31 AM
receives from the server and report its changes to the server. To stay disconnected,
the client must queue updates locally on the client and only send the batch when
the user connects to the server.

In the Java Smart Ticket sample application, the client allows users to pin-
point the exact seats they want to buy. When the user decides what show he or she
wants to see, the client downloads the data for the show’s seating plan and dis-
plays the plan to the user. The plan indicates which seats are available and which
have already been taken, as shown in Figure 3.5.

Figure 3.5 Java Smart Ticket Sample Application Displaying an Editable Seating Plan
for a Particular Movie Showing

This example highlights two important issues. First, when Java clients manip-
ulate enterprise data, they need to know about the model and some or all of the
business rules surrounding the data model. For example, the client must under-
stand the concept of booked and unbooked seats, and model that concept just like
the server does. For another example, the client must also prevent users from
trying to select booked seats, enforcing a business rule also implemented on the
server. Generally, clients manipulating enterprise data must duplicate logic on the

CHAPTER 3 THE CLIENT TIER72

DEA2e.book Page 72 Friday, March 8, 2002 12:31 AM
server, because the server must enforce all business rules regardless of what its
clients do.

Second, when Java clients manipulate enterprise data, applications need to
implement data synchronization schemes. For example, between the time when
the user downloads the seating plan and the time when the user decides what seats
he or she wants to buy, another user may buy some or all of those seats. The appli-
cation needs rules and mechanisms for resolving such a conflict. In this case, the
server’s data trumps the client’s data because whoever buys the tickets first—and
hence updates the server first—gets the tickets. The application could continue by
asking the second user if he or she wants the seats that the first user did not buy.
Or, it could refresh the second user’s display with an updated seating plan and
have the user pick seats all over again.

3.5 Summary

The J2EE platform supports a range of client devices and client programming
models. Supported devices include desktop systems, laptops, palmtops, cell phones,
and various emerging non-traditional devices. The supported programming models
include browser clients using HTML and JavaScript, browser plug-in clients such as
Flash, office suite clients such as StarOffice, and programmable clients based on
Java technologies.

Application developers should make an effort to provide users with the
highest possible level of service and functionality supported by each client device.
The primary consideration throughout the design of the client should be the net-
work, since the client participates in a networked application. At the same time,
there may be other important considerations, such as development and support
capabilities, time to market, and other factors that affect the ultimate client solu-
tion chosen for a particular application.

REFERENCES AND RESOURCES 73

DEA2e.book Page 73 Friday, March 8, 2002 12:31 AM
3.6 References and Resources

• The J2EE Tutorial. S. Bodoff, D. Green, K. Haase, E. Jendrock, M. Pawlan.
Copyright 2001, Sun Microsystems, Inc.
<http://java.sun.com/j2ee/tutorial/index.html>

• The JFC/Swing Tutorial. M. Campione, K. Walrath. Copyright 2000, Addi-
son-Wesley. Also available as
<http://java.sun.com/docs/books/tutorial/uiswing/index.html>

• The Java Tutorial, Third Edition: A Short Course on the Basics. M. Campione,
K. Walrath, A. Huml. Copyright 2000, Addison-Wesley. Also available as
<http://java.sun.com/docs/books/tutorial/index.html>

• The Eight Fallacies of Distributed Computing. P. Deutsch. Copyright 2001,
Sun Microsystems, Inc.
<http://java.sun.com/people/jag/Fallacies.html>

• Programming Wireless Devices with the Java 2 Plaform, Micro Edition. R.
Riggs, A. Taivalsaari, M. VandenBrink. Copyright 2001, Addison-Wesley.

• eMobile End-to-End Application Using the Java 2 Platform, Enterprise Edi-
tion. T. Violleau. Copyright 2000, Sun Microsystems, Inc.
<http://developer.java.sun.com/developer/technicalArti-
cles/javaone00/eMobileApplet.pdf>

• Java Technology and XML. T. Violleau. Copyright 2001, Sun Microsystems,
Inc. <http://developer.java.sun.com/developer/technicalArti-
cles/xml/JavaTechandXML/>

• A Note on Distributed Computing. J. Waldo, G. Wyant, A. Wollrath, S. Ken-
dall. Copyright November 1994, Sun Microsystems, Inc.
<http://research.sun.com/research/techrep/1994/smli_tr-94-29.pdf>

• Cascading Style Sheets Level 2 Specification. World Wide Web Consortium,
May 1998. <http://www.w3.org/TR/REC-CSS2/>

• Document Object Model (DOM) Level 2 Core Specification. World Wide Web
Consortium, November 2000. <http://www.w3.org/TR/2000/REC-DOM-
Level-2-Core-20001113/>

• ECMAScript Language Specification. European Computer Manufacturers
Association, December 1999. <ftp://ftp.ecma.ch/ecma-st/Ecma-262.pdf>

CHAPTER 3 THE CLIENT TIER74

DEA2e.book Page 74 Friday, March 8, 2002 12:31 AM
• HTML 4.01 Specification. World Wide Web Consortium, December 1999.
<http://www.w3.org/TR/html4/>

• Hypertext Transfer Protocol — HTTP/1.1. The Internet Society, 1999.
<http://www.ietf.org/rfc/rfc2616.txt>

• HTTP State Management Mechanism. The Internet Society, February 1997.
<http://www.ietf.org/rfc/rfc2109.txt>

• Java Web Start Web site <http://java.sun.com/products/javaweb-
start/developers.html>

• Input Verification. Sun Microsystems, 2001.
<http://java.sun.com/j2se/1.3/docs/guide/swing/InputChanges.html>

• Webmonkey. Lycos, 2001. <http://webmonkey.com/>

DEA2e.book Page 75 Friday, March 8, 2002 12:31 AM
C H A P T E R 4
The Web Tier
by Greg Murray and Mark Johnson

A J2EE application’s Web tier makes the application’s business logic available
on the World Wide Web. The Web tier handles all of a J2EE application’s commu-
nication with Web clients, invoking business logic and transmitting data in
response to incoming requests.

This chapter describes several ways of using Web-tier technology effectively
in a J2EE application design, including examples from the sample application.
The chapter is specifically not about Web page design.

4.1 The Purpose of the Web Tier

A server in the Web tier processes HTTP requests. In a J2EE application, the Web
tier usually manages the interaction between Web clients and the application’s busi-
ness logic. The Web tier typically produces HTML or XML content, though the
Web tier can generate and serve any content type. While business logic is often
implemented as enterprise beans, it may also be implemented entirely within the
Web tier.

The Web tier typically performs the following functions in a J2EE applica-
tion:

• Web-enables business logic—The Web tier manages interaction between
Web clients and application business logic.

• Generates dynamic content—Web-tier components generate content dynam-
ically, in entirely arbitrary data formats, including HTML, images, sound, and
video.
75

CHAPTER 4 THE WEB TIER76

DEA2e.book Page 76 Friday, March 8, 2002 12:31 AM
• Presents data and collects input—Web-tier components translate HTTP PUT
and GET actions into a form that the business logic understands and present
results as Web content.

• Controls screen flow—The logic that determines which “screen” (that is,
which page) to display next usually resides in the Web tier, because screen
flow tends to be specific to client capabilities.

• Maintains state—The Web tier has a simple, flexible mechanism for accumu-
lating data for transactions and for interaction context over the lifetime of a
user session.

• Supports multiple and future client types—Extensible MIME types describe
Web content, so a Web client can support any current and future type of down-
loadable content.

• May implement business logic—While many enterprise applications imple-
ment business logic in enterprise beans, Web-only, low- to medium-volume
applications with simple transactional behavior can implement business logic
entirely within the Web tier.

4.2 Web-Tier Technologies

This section presents a quick review of Web technologies in the J2EE platform, first
describing legacy technologies, and then the Web-tier component types that super-
sede them. Feel free to skip this section if you are already familiar with these tech-
nologies. If you need to refresh your understanding beyond what this section
offers, see the J2EE Tutorial (a reference to the J2EE Tutorial is listed in “Refer-

ences and Resources” on page 127).

4.2.1 Traditional Web-Tier Technologies

Understanding the history of dynamic Web content generation provides a context
for understanding the benefits of Web technology in the J2EE platform. The earliest
versions of the World Wide Web relied on basic HTTP servers to serve static HTML
pages to HTML browsers. However, it quickly became clear that dynamic content,
generated on demand, would make the Web a platform for delivering applications as
well as content.

WEB-TIER TECHNOLOGIES 77

DEA2e.book Page 77 Friday, March 8, 2002 12:31 AM
Several mechanisms were developed to allow Web servers to generate content
on demand, all of which can be thought of as Web server functional extensions. In
this context, a Web application is simply a complex Web server extension.

Web-tier technologies in the J2EE platform provide a superset of the function-
ality offered by the older technologies described here. Easy migration from or
seamless integration with legacy Web applications is one of the strengths of Web-
tier technologies in the J2EE platform.

The earliest standard server extension mechanism was the Common Gateway
Interface (CGI), which defines a type of stand-alone executable program used by a
server to produce dynamic content. While CGI remains a popular option for Web
applications, it has some important limitations. CGI has performance limitations,
because each HTTP request to a CGI program usually results in the creation of a
heavyweight process in the host operating system. CGI is also a simple interface
that offers no portable support for high-level system services, such as load balanc-
ing, scalability, high availability, security, state maintenance, and resource man-
agement, making scalable CGI solutions difficult to develop and maintain. CGI’s
simplicity is a double-edged sword: It is easy to understand, but it does not offer
many portable system services to the developer.

Some of CGI’s limitation can be overcome with a server extension API,
which allows developers to create libraries that generate dynamic content. Exam-
ples of such APIs include NSAPI (for Netscape servers), Apache extension
modules (for Apache), and ISAPI (for Microsoft Internet Information Server).
While extension libraries alleviate the overhead of CGI process creation, server
extension APIs are nonportable between server vendors, locking applications into
a particular vendor’s API and product line. Worse, server extension libraries can
compromise system stability, because an extension library crash can take down
the entire server.

An improvement to server extension APIs is server-side scripting, in which a
script running inside the server produces dynamic content. Fast CGI is a server-
side scripting interface that replaces an operating system CGI program with a
server-side CGI script. Server-side scripts that fail usually do not crash the server,
because the script interpreter can easily intercede to recover from script failures.
Although server-side scripts may be somewhat more portable than extension
APIs, they are non-portable to the extent that they use server-specific features.
Server-side scripts also do not provide uniform, portable access to high-level
system services.

CHAPTER 4 THE WEB TIER78

DEA2e.book Page 78 Friday, March 8, 2002 12:31 AM
4.2.2 Web-Tier Technologies in the J2EE Platform

Web-tier technologies in the J2EE platform provide the benefits of server-side
scripting, using compiled Java classes in a standardized, secure, and vendor-neutral
environment. This section briefly describes and provides best practices for Web-tier
technologies in the J2EE platform.

A Web application is a collection of Web-tier components, content, and config-
uration information, which operates as a single functional unit. The runtime support
environment for a Web application is called a Web container. A Web application
archive (.war) file contains all of the class files and resources for the Web appli-
cation, along with an XML deployment descriptor file that configures the
application. See Chapter 7 in particular for more on packaging and deploying
Web applications.

The platform specification defines a contract between the Web container and
each Web component, defining the component’s lifecycle, the behavior the com-
ponent must implement, and the services that the server must provide to the
component.

The platform specification also defines two types of Web component
technologies: Java Servlets (“servlets”) and JavaServer PagesTM (JSPTM pages)
technology.

A servlet is a Java class that extends a J2EE server, producing dynamic
content in response to requests from the server. The server passes service requests
to the servlet through the standard interface javax.servlet, which every servlet
must implement.

A JSP page is an HTML page with special markup that provides customizable
behavior for generating dynamic content at runtime. A JSP page is usually trans-
lated into a servlet when it is deployed. JSP technology provides a
document-centric, rather than programmatic, way to specify dynamic content gen-
eration.

4.2.3 The Web Container

A J2EE Web application runs inside a J2EE server’s Web container. The container
manages each component’s lifecycle, dispatches service requests to application
components, and provides standard interfaces to context data such as session state
and information about the current request.

The Web container provides a consistent interface to the components it hosts,
so Web components are portable across application servers. And, because packag-
ing and deployment of J2EE Web applications are standardized, a Web application

WEB-TIER TECHNOLOGIES 79

DEA2e.book Page 79 Friday, March 8, 2002 12:31 AM
can be deployed into any J2EE server without recompiling the code or rebuilding
the application archive.

The next few sections describe Web-tier components in the J2EE platform and
explain the benefits their features provide.

4.2.4 Java Servlets

A Java Servlet is a Java class that extends a J2EE-compatible Web server. Each
servlet class produces dynamic content in response to service requests to one or
more URLs.

Servlets offer some important benefits over earlier dynamic content genera-
tion technologies. Servlets are compiled Java classes, so they are generally faster
than CGI programs or server-side scripts. Servlets are safer than extension librar-
ies, because the Java Virtual Machine (JVM) can recover from a servlet that exits
unexpectedly. Servlets are portable both at the source-code level (because of the
Java Servlet specification) and at the binary level (because of the innate portability
of Java bytecode). Servlets also provide a richer set of standard services than any
other widely adopted server extension technology.

In addition to producing content, servlets have several features that support
application structure. A developer can create classes that respond to events in a
servlet’s lifecycle by implementing listener interfaces. The sample application
uses listener interfaces to initialize servlet data structures. A servlet can also be
extended by one or more servlet filters, which are reusable classes that wrap calls
to a servlet’s service method, transforming the request or the response. Servlet
filters can be organized into filter chains that perform successive transformations
on servlet requests or responses.

Distributed servlets are more scalable than non-distributed servlets. The Web
container can provide an application with load balancing and failover by migrat-
ing user sessions among cluster nodes. Distributed servlets are marked
distributable in the Web application deployment descriptor. They must follow a
set of restrictions beyond those required of non-distributed servlets. The addi-
tional restrictions ensure that servlet code operates properly across session migra-
tions.

For an introduction to or review of servlets, see the section entitled “Java
Servlet Technology” in The J2EE Tutorial.

CHAPTER 4 THE WEB TIER80

DEA2e.book Page 80 Friday, March 8, 2002 12:31 AM
4.2.5 JavaServer Pages (JSP) Technology

Most Web applications produce primarily dynamic HTML pages that, when
served, change only in data values and not in basic structure. For example, all of
the catalog pages in an online store may have identical structure and differ only in
the items they display. JSP technology exists for producing such content.

A JSP page is a document containing fixed template text, plus special markup
for including other text or executing embedded logic. The fixed template text is
always served to the requester just as it appears in the page, like traditional
HTML. The special markup can take one of three forms: directives, scripting ele-
ments, or custom tags (also known as “custom actions”). Directives are instruc-
tions that control the behavior of the JSP page compiler and therefore are
evaluated at page compilation time. Scripting elements are blocks of Java code
embedded in the JSP page between the delimiters <% and %>. Custom tags (dis-
cussed later in this section) are programmer-defined markup tags that generate
dynamic content when the page is served. The JavaServer Pages specification
defines a set of standard tags that are available in all platform implementations.
Custom tags and scripting elements generate dynamic content that is included in a
response when a page is being served.

JSP pages can specify dynamic content of any textual type, but they are pri-
marily used for creating structured content such as HTML, XML, XHTML, and
so on. JSP pages are easier to write than servlets, because they look like structured
documents. JSP pages are a more natural development technology for page
designers, who specialize in authoring structured documents. Although a JSP
page looks to its author like a document, most J2EE implementations translate a
JSP page into a servlet class when it is deployed. JSP pages are also compatible
with a wide array of authoring tools that simplify page creation.

JSP pages differ from servlets in their programming model. A JSP page is pri-
marily a document that specifies dynamic content, rather than a program that pro-
duces content. JSP page technology provides a “document-centric” alternative to
“programmatic” servlets for creating dynamic, structured data.

4.2.5.1 XML JSP Page Syntax

The JSP specification defines an alternate XML syntax for JSP pages. Pages in stan-
dard JSP syntax cannot be well-formed XML because the markup does not conform
to XML’s requirements. Pages using the alternate JSP XML syntax can be validated
against an XML Schema Definition Language (XSDL) schema to check for many
potential errors that would otherwise appear only at runtime. XML syntax can also

WEB-TIER TECHNOLOGIES 81

DEA2e.book Page 81 Friday, March 8, 2002 12:31 AM
facilitate integration with development tools. For integrity, a single JSP file may not
contain a mix of standard JSP syntax and XML syntax.

Writing JSP pages in XML syntax is different from using JSP pages to gener-
ate XML content. The XML JSP page syntax is a way to specify a JSP page using
well-formed XML. JSP pages written in either standard or XML syntax are useful
for generating dynamic XML content.

4.2.5.2 Custom Tags

JSP technology allows developers to define custom tags, which are markup tags that
are replaced by dynamic content when the page is served. The dynamic content is
created by a tag handler class, which a programmer creates and packages in a tag
library archive file. A programmer defines the syntax for a tag and implements the
tag’s behavior in the handler class. Page authors can then import and use tags in tag
libraries just as they use other markup tags.

Custom tags provide several benefits to a J2EE application design.

• Custom tags are reusable, as scripting elements generally are not.

• Libraries of custom tags provide high-level services for JSP pages that are por-
table across JSP containers.

• Custom tags ease maintenance, because they reduce repeated code. Changing
a tag’s handler class changes the tag’s behavior everywhere it is used.

• Custom tags help developers focus on their core skills. Page authors can work
exclusively with custom tags and standard markup, instead of with a jumble of
tags and cryptic scripting elements. Meanwhile, programmers can focus on de-
veloping custom tag logic.

• Custom tags can provide non-programmers, such as page authors, with an in-
tuitive syntax for invoking business logic.

• Custom tags can decouple business logic and data presentation. This separa-
tion eases maintenance, clarifies the intent of each component, and allows pro-
grammers and page authors to work relatively independently of one another.

4.2.5.3 Standard Tag Libraries

Standard tag libraries are sets of custom tags that provide a basic set of domain-
neutral functionality for JSP pages. Standard tags typically perform such functions

CHAPTER 4 THE WEB TIER82

DEA2e.book Page 82 Friday, March 8, 2002 12:31 AM
as Web resource inclusion, request forwarding, conditional logic, collection itera-
tion, XSLT transformations, internationalization, state access, and HTML forms.
Some companies have produced tag libraries that are intimately integrated with their
tools and J2EE product lines. Other organizations have produced tag libraries for
general use in J2EE applications. Apache Taglibs, for example, is an open-source
project that contains dozens of custom tags.

The Java Standard Tag Library (JSTL) is now a part of the Java Community
Process (JSR-52, A Standard Tag Library for JavaServer Pages). Once standard-
ized, JSTL will provide a rich layer of portable functionality to JSP pages. It will
be available in all compliant JSP containers. See the Apache Jakarta taglib page
listed in “References and Resources” on page 127 for more on JSTL.

Standard tag libraries often provide much of the basic functionality that JSP
pages need. Mature libraries have been tested and optimized by a community of
developers. Adopting a high-quality standard tag library can save application devel-
opment time.

4.2.6 Web-Tier Technology Guidelines

This section provides guidelines for effective use of servlets and JSP pages.

4.2.6.1 Where to Use Servlets

Servlets are most effectively used for implementing logic and generating binary
content.

4.2.6.1.1 Use Servlets to Implement Services

Servlets are usually not visual components, except for some that generate binary
content. Instead, think of a servlet as an information service provided by an applica-
tion. A servlet can perform whatever service it provides—templating, security, per-
sonalization, application control—and then select a presentation component (often a
JSP page) to which it forwards the request for display. The sample application
implements its templating services as a servlet (see Section 4.4.3.1 on page 110).
Just as a servlet can be thought of as a service, a servlet filter can be thought of as a
customization or an extension of the services that a servlet provides.

4.2.6.1.2 Use Servlets as Controllers

Servlets are the preferred technology for implementing a Web-tier controller, which
determines how to handle a request and chooses the next view to display. A control-

WEB-TIER TECHNOLOGIES 83

DEA2e.book Page 83 Friday, March 8, 2002 12:31 AM
ler activates application operations and makes decisions, which are essentially pro-
cedural tasks that are best suited for program code in servlets.

JSP pages should not be used as controllers. Because JSP pages that are
mostly logic are a mixture of markup tags and program code, they are difficult to
read and maintain, especially for Web developers who are not programmers.

public class extends HttpServlet {

protected void doPost(HttpServletRequest req,

HttpServletResponse res) throws... {

String creditCard = req.getParameter("creditCard");

String jspPage = "/process" + creditCard + ".jsp";

ServletContext sc = getServletContext();

RequestDispatcher rd = getRequestDispatcher(jspPage);

rd.forward(req, res);

}

}

Code Example 4.1 A Servlet Properly Used as a Controller

Code Example 4.1 is an example of a servlet used properly as a controller.
The same controller is implemented improperly as a JSP page in Code Example
4.5 on page 91. Comparing the two, the pure servlet implementation is cleaner and
easier to maintain.

See also Section 4.2.6.9 on page 91.

4.2.6.1.3 Use Servlets to Generate Binary Content

Binary content should be generated by servlets. Servlets that output binary content
must set the Content-Type HTTP header to the MIME type of the content being
generated. A servlet writes its binary data to an OutputStream acquired from the
ServletRequest, as shown in Code Example 4.2.

public class JpgWriterServlet extends HttpServlet {

public void service(HttpServletRequest req,

HttpServletResponse rsp) throws... {

rsp.setHeader("Content-type", "image/jpg");

CHAPTER 4 THE WEB TIER84

DEA2e.book Page 84 Friday, March 8, 2002 12:31 AM
OutputStream os = rsp.getOutputStream();

// ... now write binary data to the OutputStream...

Code Example 4.2 A Servlet that Produces Binary Content

A servlet can write to either an OutputStream or a PrintWriter, but not both.
JSP pages can’t create binary content.

4.2.6.2 Avoid Writing Servlets That Print Mostly Static Text

Servlets composed mostly of println statements would be better implemented as
JSP pages. JSP pages are for creating textual content that combines template data
with dynamic data values. Servlets that print a great deal of text, and perform some
logic between the print lines, are tedious to write and difficult to maintain. Every
delimiter in the quoted strings written by the servlet must be properly escaped with a
backslash, reducing readability. Updating the visual presentation of such a servlet
requires modifying and recompiling a program, instead of updating a page of
markup.

public class PopulateServlet extends HttpServlet {

 public void doGet(HttpServletRequest req,

 HttpServletResponse res) throws ... {

 ...

 if (dbConnectionClosed) {

 PrintWriter out = response.getWriter();

 out.println("<html>");

 out.println("<body bgcolor=white>");

 out.println("Can't con-

nect");

 out.println("
Confirm your database is running");

 out.println("</body></html>");

 }

}

Code Example 4.3 Bad Practice: a Servlet that Prints Static Content

WEB-TIER TECHNOLOGIES 85

DEA2e.book Page 85 Friday, March 8, 2002 12:31 AM
In Code Example 4.3, a servlet is used inappropriately to generate static con-
tent. The code is difficult to read, requires careful delimiter escaping, and would
probably need a programmer for nontrivial modifications.

A better design, shown in Code Example 4.4, demonstrates a servlet that
detects an error and forwards the request to a JSP page, which reports the error.
This maintains proper separation of function from presentation, allowing Web
developers and programmers to focus on their core skills.

PopulateServlet.java:

public class PopulateServlet extends HttpServlet {

 protected void doGet(HttpServletRequest req,

 HttpServletResponse res) throws ... {

 ...

 if (dbConnectionClosed) {

 ServletContext ctx = getServletContext();

 ctx.getRequestDispatcher("/db_failed.jsp").forward(req, res);

 }

}

db_failed.jsp:

<html>

 <body>

Unable to Connect

Confirm that your database is running

 </body>

<html>

Code Example 4.4 Servlet Logic that Delegates Display to a JSP Page

4.2.6.3 Use RequestDispatcher Methods forward and include Correctly

A servlet uses two RequestDispatcher methods, forward and include, to create a
response using other components. However, the two methods are intended for fun-
damentally different operations. Use RequestDispatcher.forward to delegate pro-
cessing of an entire request to another component, and use
RequestDispatcher.include to build a response containing results from multiple
Web resources.

CHAPTER 4 THE WEB TIER86

DEA2e.book Page 86 Friday, March 8, 2002 12:31 AM
When using the request dispatcher in a servlet, keep in mind that
RequestDispatcher.forward requires that the body of the servlet response be
empty. Writing something to the response and then calling forward either causes a
runtime exception or discards any data previously written.

4.2.6.4 Where to Use JavaServer Pages

JSP pages are typically used for creating structured or free-form textual data. They
are most appropriate where data values change between requests, but data structure
either doesn’t change, or changes very little.

4.2.6.4.1 Use JSP Pages for Data Presentation

JSP pages are most appropriately used for producing structured textual content.
Enterprise application data view types typically include HTML, XHTML, and
DHTML.

JSP pages are best used for content that is partially fixed, with some elements
that are filled in dynamically at runtime. A JSP page contains fixed content called
“template data” (not to be confused with the templating mechanism described in
this chapter). Custom tags or scripting elements occur at various points in the tem-
plate data, and are replaced at runtime with dynamic data, producing customized
content.

JSP pages cannot create binary content. They are also usually not appropriate
for creating content with highly variable structure or for controlling request routing.
Servlets are better for those situations. (See Section 4.2.6.1 on page 82 for more on
this topic.) JSP pages can reasonably activate business logic, if the implementation
of that logic is in a custom tag instead of in a scriptlet; see Section 4.2.6.8 on page
89.

4.2.6.4.2 Use JSP Pages to Generate XML

JSP pages are an excellent technology for generating XML with fixed structure.
They are particularly useful for generating XML messages in standard formats,
where message tags are fixed and only attribute values or character data change each
time the page is served. XML documents can also be created from templates, assem-
bling several XML subdocuments into a composite whole.

WEB-TIER TECHNOLOGIES 87

DEA2e.book Page 87 Friday, March 8, 2002 12:31 AM
4.2.6.4.3 Use JSP Pages to Generate Unstructured Textual Content

JSP pages are not limited to producing documents with structured markup. They can
also create unstructured textual content such as ASCII text, fixed-width or delimited
data, and even PostScript. For example, JSP pages would be an excellent choice for
rendering personalized e-mail form letters to customers.

4.2.6.4.4 Use JSP Pages as Templates

JSP pages may also be appropriately used for assembling textual data from multiple
sources, as described in Section 4.4.3.1 on page 110.

4.2.6.5 JSP Pages Character Encoding

JSP pages use class javax.servlet.jsp.JSPWriter to write content to the response
stream. This class automatically ensures that any text output by the JSP page is
properly encoded. But automatic encoding is also a limitation, because it means JSP
pages cannot be used to produce binary content directly.

4.2.6.6 Avoid Heavy Use of Logic Tags

Standard tag libraries usually provide so-called “logic tags,” which are custom tags
that loop, perform iterations, evaluate expressions, and make decisions. Avoid using
standard tag libraries to perform a great deal of logic in JSP pages. Using custom
tags for logic provides little benefit, and violates separation of logic and presenta-
tion. JSP pages that are simply procedural programs written in XML syntax are at
least as difficult to maintain as other types of programs.

Instead of creating “procedural” JSP pages, implement logic in a custom tag,
servlet, or helper class. One powerful technique is to define custom tags for appli-
cation logic, implementing the tag handlers using enterprise beans. A thin layer of
code (the tag handler class) links the custom tag with enterprise bean lookup and
method invocation. This approach provides the view (JSP page or servlet) with
direct access to model data (in the enterprise beans), maintaining separation of
presentation from function.

4.2.6.7 Use JSP Include Directives and Tags Appropriately

The JSP include directive and the JSP include tag have similar syntax but different
purposes.

CHAPTER 4 THE WEB TIER88

DEA2e.book Page 88 Friday, March 8, 2002 12:31 AM
An include directive includes literal text “as is” in the JSP page and is not
intended for use with content that changes at runtime. The include occurs only
when the servlet implementing the JSP page is being built and compiled. For
example, the following include directive includes a file at page compilation time:

<%@ include file="header.jsp" @%>

The JSP include tag includes either static or dynamic content in the JSP page
when the page is being served. When used to include static content, the include
tag works just the same as the include directive. But when an include tag includes
dynamic content, the tag generates and includes the dynamic content in the
context of the current request. The include occurs each time the JSP page is
served. For example, the following JSP include tag includes dynamic content,
which depends on the current request:

<jsp:include page="/servlets/currentUserInfoServlet"/>

In contrast, the JSP include directive is commonly used to modularize Web
pages, to reuse content, and to keep Web page size manageable. For example, an
include directive could include headers and footers on every page. Using a JSP
include directive results in a larger servlet and, if abused, could lead to code bloat.

The JSP include tag is commonly used to insert dynamically generated
content into a JSP page at the time it is served. An include tag is more flexible
than an include directive, because it can select the content to include at runtime.
But an include tag requires runtime processing, and is therefore slower than an
include directive.

Each time a particular JSP page is requested, all of its included pages are eval-
uated and recompiled if necessary. A child page must redeclare the components it
uses (for example, JavaBeans components and objects provided by the container).
Pages share data by way of the HttpSession object.

The sample application uses primarily include tags, because most of its JSP
pages produce dynamic content.

The include directive is problematic for internationalization, because the
contentType:charset of the included page cannot be set independently of the
including page. The include tag is the only choice for including content with page
encoding in JSP version 1.1.

Implementation note: Some Web container implementations (including
Tomcat) do not automatically track modifications to files included by an include

WEB-TIER TECHNOLOGIES 89

DEA2e.book Page 89 Friday, March 8, 2002 12:31 AM
directive. If you change a file that is included, you also need to force a recompile
by “touching” (change the modification date of) the “parent” files that include the
modified file.

4.2.6.8 Using Custom Tags to Avoid Scriptlets

Consider using custom tags instead of scriptlets in JSP pages for the following rea-
sons:

• Scriptlet code is not reusable—Scriptlet code appears in exactly one place:
the JSP page that defines it. If the same logic is needed elsewhere, it must be
either included (decreasing readability) or copied and pasted into the new con-
text.

Custom tags can be reused by reference.

• Scriptlets encourage copy/paste coding—Because scriptlet code appears in
only one place, it is often copied to a new context. When the scriptlet needs to
be modified, usually all of the copies need updating. Finding all copies of the
scriptlet and updating them is an error-prone maintenance headache. With
time, the copies tend to diverge, making it difficult to determine which script-
lets are copies of others, further frustrating maintenance.

Custom tags centralize code in one place. When a tag handler class changes,
the tag’s behavior changes everywhere it is used.

• Scriptlets mix logic with presentation—Scriptlets are islands of program
code in a sea of presentation code. Changing either requires some understand-
ing of what the other is doing to avoid breaking the relationship between the
two. Scriptlets can easily confuse the intent of a JSP page by expressing pro-
gram logic within the presentation.

Custom tags encapsulate program logic so that JSP pages can focus on presen-
tation.

• Scriptlets break developer role separation—Because scriptlets mingle pro-
gramming and Web content, Web page designers need to know either how to
program or which parts of their pages to avoid modifying. Poorly implemented
scriptlets can have subtle dependencies on the surrounding template data. Con-
sider, for example, the following line of code:

<% out.println("<a \"href=\"" + url + "\">" + text); %>

CHAPTER 4 THE WEB TIER90

DEA2e.book Page 90 Friday, March 8, 2002 12:31 AM
It would be very easy to change this line in a way that breaks the page, espe-
cially for someone who does not understand what the line is doing.

Custom tags help the separation of developer roles, because programmers cre-
ate the tags, and page authors use them.

• Scriptlets make JSP pages difficult to read and to maintain—JSP pages
with scriptlets mix structured tags with JSP page delimiters and Java language
code. The Java language code in scriptlets often uses “implicit” objects, which
are not declared anywhere except in the JavaServer Pages specification. Also,
even consistent indentation does not help readability much for nontrivial
pages.

JSP pages with custom tags are composed of tags and character data, which is
much easier to read. JSP pages that use XML syntax can be validated as well.

• Scriptlet compile errors can be difficult to interpret—Many JSP page com-
pilers do a poor job of translating line numbers between the source page and
the generated servlet. Even those that emit error messages often depend on in-
visible context, such as implicit objects or surrounding template data. With
poor error reporting, a missed semicolon can cost hours of development time.

Erroneous code in custom tags will not compile either, but all of the context
for determining the problem is present in the custom tag code, and the line
numbers do not need translation.

• Scriptlet code is difficult to test—Unit testing of scriptlet code is virtually im-
possible. Because scriptlets are embedded in JSP pages, the only way to exe-
cute them is to execute the page and test the results.

A custom tag can be unit tested, and errors can be isolated to either the tag or
the page in which it is used.

Expressions sometimes also suffer from these problems, but they are some-
what less problematic than scriptlets because they tend to be small.

Custom tags maintain separation between developer roles. They encourage
reuse of logic and state within a single source file. They also improve source code
readability, and improve both testability and error reporting.

Some projects have Web page authors but few or no programmers. Page
authors with limited programming skill can use scriptlets effectively if they use
scriptlets for display logic only. Business logic should never be implemented in
scriptlets.

WEB-TIER APPLICATION STRUCTURE 91

DEA2e.book Page 91 Friday, March 8, 2002 12:31 AM
4.2.6.9 Avoid Forwarding Requests from JSP Pages

When a JSP page calls RequestDispatcher.forward, either directly or with a
custom tag, it is acting as a controller. Controllers are better implemented as servlets
than as JSP pages, because controllers are logical components, not presentation
components. Code Example 4.5 demonstrates a controller implemented as a JSP
page.

<% String creditCard = request.getParameter("creditCard");

if (creditCard.equals("Visa")) { %>

<jsp:forward page="/processVisa.jsp"/>

<% } else if (creditCard.equals("American Express")) { %>

<jsp:forward page="/processAmex.jsp"/>

<% } %>

Code Example 4.5 Bad Practice: JSP Page Acting as a Controller

In this example, the scriptlets and tags conditionally forward the request to
another JSP page based on a request attribute. If each of the forward tags were
replaced with a single line of Java code that performed the forward, the result
would be a JSP page containing nothing but a scriptlet. This code would obvi-
ously be better implemented as a servlet. Code Example 4.1 on page 83 shows the
code for a servlet implementation of this functionality.

4.3 Web-Tier Application Structure

The J2EE platform is a layered set of system services that are consistently available
to J2EE applications across implementations. It is the top layer of a “stack” of ser-
vices that support an application, shown in Figure 4.1. The J2EE platform runs on
top of the J2SE platform, which itself runs on top of the host operating system. In

CHAPTER 4 THE WEB TIER92

DEA2e.book Page 92 Friday, March 8, 2002 12:31 AM
the Web tier, a J2EE Web container provides services related to serving Web
requests.

Figure 4.1 Platform and Application Layers

Just as the J2EE platform has layers, J2EE applications can benefit from
architectural layering. The highest-level division between layers in an applica-
tion’s Web tier is between functions that are specific to a particular application
and those that occur in all Web applications.

All Web-tier applications share a common set of basic requirements that are
not provided by the J2EE platform itself. A software layer called an application
framework can meet these requirements and can be shared between applications.
As shown in Figure 4.1, application-specific code is written in terms of the appli-
cation framework layer.

A Web-tier application framework sits on top of the J2EE platform, providing
common application functionality such as dispatching requests, invoking model
methods, and selecting and assembling views. Framework classes and interfaces
are structural; they are like the load-bearing elements of a building, forming the
application’s underpinnings. Application developers extend, use, or implement
framework classes and interfaces to perform application-specific functions. For
example, a framework may offer an abstract class that a developer may extend to
execute business logic in response to application events. A Web-tier application
framework makes Web-tier technologies easier to use, helping application devel-
opers to concentrate on business logic.

WEB-TIER APPLICATION STRUCTURE 93

DEA2e.book Page 93 Friday, March 8, 2002 12:31 AM
The BluePrints recommended best practice is to choose an existing, proven
Web-tier application framework for a J2EE application rather than designing and
building a custom framework layer. A Web-tier application framework can
provide the following benefits to your application:

• Decouples presentation and logic into separate components—Frameworks
encourage separating presentation and logic because the separation is designed
into the extension interfaces.

• Separates developer roles—Application frameworks generally provide dif-
ferent interfaces for different developers. Presentation component developers
tend to focus on creating JSP pages using custom tags, while logic developers
tend to write action classes, tag handlers, and model code. This separation al-
lows both types of developers to work more independently.

• Provides a central point of control—Most frameworks provide a rich, cus-
tomizable set of application-wide features, such as templating, localization, ac-
cess control, and logging.

• Facilitates unit testing and maintenance—Because framework interfaces are
consistent, automated testing harnesses are easy to build and execute.

• Can be purchased instead of built—Time not spent developing structural
code is available for developing business logic.

• Provides a rich set of features—Adopting a framework can leverage the ex-
pertise of a group of Web-tier MVC design experts. The framework may in-
clude useful features that you do not have the experience to formulate or the
time to develop.

• Encourages the development and use of standardized components—Over
time, developers and organizations can accumulate and share a toolbox of pre-
ferred components. Most frameworks incorporate a set of custom tags for view
construction.

• Provides stability—Frameworks are usually created and actively maintained
by large organizations or groups, and are used and tested in a large installed
base. Accordingly, framework code tends to be more stable than custom code.

• Has community support—Popular frameworks attract communities of enthu-
siastic users who report bugs, provide consulting and training services, publish

CHAPTER 4 THE WEB TIER94

DEA2e.book Page 94 Friday, March 8, 2002 12:31 AM
tutorials, and produce useful add-ons. Open frameworks are particularly strong
in this regard.

• May reduce training costs and time—Developers already trained and expe-
rienced in using a framework get up to speed more quickly and are more pro-
ductive.

• May simplify internationalization—Most frameworks support a flexible in-
ternationalization strategy.

• May support input validation—Many frameworks have consistent ways to
specify input validation. Validation is commonly available on the client side,
on the server side, or both.

• May be compatible with tools—Good tools can improve productivity and re-
liability. Some frameworks are integrated with rapid application development
tool sets.

All of these benefits come at a cost, of course. You always have less control
over a design you have acquired rather than created yourself. Some frameworks
must be purchased, although these are usually bundled with a tool set. Other peo-
ple’s code in your application means other people’s bugs in your application. Still,
most development projects find that a Web-tier framework improves design and
implementation quality.

4.4 Web-Tier Application Framework Design

Model-View-Controller (“MVC”) is the BluePrints recommended architectural
design pattern for interactive applications. MVC, described in Chapter 11, organizes
an interactive application into three separate modules: one for the application model
with its data representation and business logic, the second for views that provide
data presentation and user input, and the third for a controller to dispatch requests
and control flow. Most Web-tier application frameworks use some variation of the
MVC design pattern.

The MVC design pattern provides a host of design benefits. MVC separates
design concerns (data persistence and behavior, presentation, and control),
decreasing code duplication, centralizing control, and making the application more
easily modifiable. MVC also helps developers with different skill sets to focus on
their core skills and collaborate through clearly defined interfaces. For example, a
J2EE application project may include developers of custom tags, views, applica-

WEB-TIER APPLICATION FRAMEWORK DESIGN 95

DEA2e.book Page 95 Friday, March 8, 2002 12:31 AM
tion logic, database functionality, and networking. An MVC design can centralize
control of such application facilities as security, logging, and screen flow. New
data sources are easy to add to an MVC application by creating code that adapts
the new data source to the view API. Similarly, new client types are easy to add by
adapting the new client type to operate as an MVC view. MVC clearly defines the
responsibilities of participating classes, making bugs easier to track down and
eliminate.

This section describes how to use MVC to organize a J2EE Web application
design using the sample application’s Web Application Framework design as an
example. Many of the key classes described (the controller, the templating service,
the abstract action class, and so on) are usable for any application, not just for an
online shopping application.

A J2EE application’s Web tier serves HTTP requests. At the highest level, the
Web tier does four basic things in a specific order: interprets client requests, dis-
patches those requests to business logic, selects the next view for display, and gen-
erates and delivers the next view. (See Figure 4.2.)

Figure 4.2 The Web-Tier Service Cycle

The Web-tier controller receives each incoming HTTP request and invokes
the requested business logic operation in the application model. Based on the
results of the operation and state of the model, the controller then selects the next
view to display. Finally, the controller generates the selected view and transmits it
to the client for presentation.

Figure 4.2 is deceptively simple. An enterprise application’s Web tier com-
monly has the following requirements:

CHAPTER 4 THE WEB TIER96

DEA2e.book Page 96 Friday, March 8, 2002 12:31 AM
• An application design must have a strategy for serving current and future client
types.

• A Web-tier controller must be maintainable and extensible. Its tasks include
mapping requests to application model operations, selecting and assembling
views, and managing screen flow. Good structure can minimize code complex-
ity.

• Application model API design and technology selection have important impli-
cations for an application’s complexity, scalability, and software quality.

• Choosing an appropriate technology for generating dynamic content improves
development and maintenance efficiency.

The BluePrints best practice is to implement the Web tier of a J2EE enterprise
application using an appropriate Web application framework. (See Section 4.4.5
on page 114.) The next several sections describe the general design of a J2EE
application Web tier. If you choose to use a Web application framework, the fol-
lowing discussion will help you to understand what the framework does and how
to use it. If you write your own Web-tier architectural code, the following design
discussions will help you make educated decisions about how to use the technol-
ogy.

4.4.1 Structuring the Web Tier

Overall structure is the most important consideration in a Web-tier design. Both the
sample application and the various existing Web application frameworks implement
some form of “Model 2” architecture, where a servlet manages client communica-
tion and business logic execution, and presentation resides mainly in JSP pages.

The literature on Web-tier technology in the J2EE platform frequently uses
the terms “Model 1” and “Model 2” without explanation. This terminology stems
from early drafts of the JSP specification, which described two basic usage pat-
terns for JSP pages. While the terms have disappeared from the specification doc-
ument, they remain in common use. Model 1 and Model 2 simply refer to the
absence or presence (respectively) of a controller servlet that dispatches requests
from the client tier and selects views.

A Model 1 architecture consists of a Web browser directly accessing Web-tier
JSP pages. The JSP pages access Web-tier JavaBeans that represent the applica-
tion model, and the next view to display (JSP page, servlet, HTML page, and so
on) is determined either by hyperlinks selected in the source document or by

WEB-TIER APPLICATION FRAMEWORK DESIGN 97

DEA2e.book Page 97 Friday, March 8, 2002 12:31 AM
request parameters. A Model 1 application control is decentralized, because the
current page being displayed determines the next page to display. In addition, each
JSP page or servlet processes its own inputs (parameters from GET or POST). In
some Model 1 architectures, choosing the next page to display occurs in scriptlet
code, but this usage is considered poor form. (See the design guideline Section
4.2.6.8 on page 89.)

A Model 2 architecture introduces a controller servlet between the browser
and the JSP pages or servlet content being delivered. The controller centralizes the
logic for dispatching requests to the next view based on the request URL, input
parameters, and application state. The controller also handles view selection,
which decouples JSP pages and servlets from one another. Model 2 applications
are easier to maintain and extend, because views do not refer to each other
directly. The Model 2 controller servlet provides a single point of control for secu-
rity and logging, and often encapsulates incoming data into a form usable by the
back-end MVC model. For these reasons, the Model 2 architecture is recom-
mended for most interactive applications.

An MVC application framework can greatly simplify implementing a Model
2 application. Application frameworks such as Apache Struts and JavaServer
FacesTM (see Section 4.4.5 on page 114) include a configurable front controller
servlet, and provide abstract classes that can be extended to handle request dis-
patches. Some frameworks include macro languages or other tools that simplify
application construction.

The Model 1 architecture can provide a more lightweight design for small,
static applications. Model 1 architecture is suitable for applications that have very
simple page flow, have little need for centralized security control or logging, and
change little over time. Model 1 applications can often be refactored to Model 2
when application requirements change.

4.4.1.0.1 When to Switch from Model 1 to Model 2

JSP pages in a Model 1 application that use scripting elements, custom tags, or
JavaScript to forward requests should be refactored to Model 2.

A Model 1 architecture is best when the page navigation is simple and fixed,
and when a simple directory structure can represent the structure of the pages in
the application. Such applications usually embed the page flow information in the
links between the pages. The presence of forward in a JSP page implies that logic
embedded in the page is making a decision about the next page to display.

Over time, as the application grows and changes, page flow logic accumu-
lates. The application becomes difficult to maintain because the page flow logic is

CHAPTER 4 THE WEB TIER98

DEA2e.book Page 98 Friday, March 8, 2002 12:31 AM
distributed across multiple pages. The best time to switch from Model 1 to Model
2 is before this maintenance problem arises. This is why it’s usually best to choose
Model 2 from the outset, basing the application on an existing Web controller
framework that best meets application requirements. Model 1 remains a viable
option for simple, static applications.

4.4.2 Web-Tier MVC Controller Design

The Model 2 architecture uses servlets for processing requests and selecting views.
The Front Controller architectural design pattern centralizes an application’s request
processing and view selection in a single component. Each type of Web client sends
requests to and receives responses from a single URL, simplifying client develop-
ment. The Front Controller receives requests from the client and dispatches them to
the application model. This single point of dispatch makes the Front Controller a
logical place for such global facilities as security and logging. The Front Controller
also selects and formats the next client view. The controller is also an application of
the Mediator pattern, because it decouples view components from one another.

In the J2EE platform, a Front Controller is typically implemented as a servlet.
The sample application’s Front Controller servlet handles all HTTP requests. The
user views, discussed in the next section, are mostly JSP pages chosen by the
Front Controller.

4.4.2.1 Web-Tier Controller Design

A Web-tier MVC controller maps incoming requests to operations on the applica-
tion model, and selects views based on model and session state. Web-tier controllers
have a lot of duties, so they require careful design to manage complexity. Because
most enterprise applications grow over time, extensibility is an important require-
ment. This section describes some strategies for the internal structure of a controller
in the Web tier, illustrated by example code adapted from the Web Application
Framework, part of the BluePrints sample application.

4.4.2.1.1 Identifying the Operation to Perform

When a controller receives an HTTP request, it needs to be able to distinguish what
application operation is being requested. How can the client, for example, request

WEB-TIER APPLICATION FRAMEWORK DESIGN 99

DEA2e.book Page 99 Friday, March 8, 2002 12:31 AM
that the server create a new user? There are several ways to indicate to the server
which operation to perform. The more common methods include:

• Indicate the operation in a hidden form field, which a POST operation delivers
to the controller; for example:

<FORM METHOD="POST" ACTION="http://myServer/myApp/myServlet">

<INPUT TYPE="HIDDEN" NAME="OP" VALUE="createUser"/>

<!-- other form contents... -->

</FORM>

• Indicate the operation in a HTTP GET query string parameter; for example:

http://myHost/myApp/servlets/myServlet?op=createUser

• Use a servlet mapping to map all URLs with a particular suffix or base URL to
a specific servlet. A servlet mapping is a deployment descriptor definition that
compares request paths to a pattern and dispatches matching requests to the
corresponding servlet. For example, imagine that a Web application’s deploy-
ment descriptor defines the following servlet mapping:

<servlet-mapping>

<servlet-name>myServlet</servlet-name>

<url-pattern>*.do</url-pattern>

</servlet-mapping>

Imagine also that the servlet’s context path is http://myServer/myApp/serv-
lets. The servlet container would direct a request with URL http://myServ-

er/myApp/createUser.do myServlet to myServlet, because the request URL
matches the pattern *.do. Servlet myServlet can extract the requested opera-
tion’s name from the request URL. Chapter 11 of the Java Servlet 2.3 specifi-
cation defines servlet mappings.

Of the three options discussed here, the BluePrints recommendation is to use
servlet mappings when they are available. Servlet mappings provide the most flex-
ible way to control where to route URLs based on patterns in the URLs. Most
Web application frameworks (see Section 4.4.5 on page 114) use servlet mappings
to direct requests to the appropriate front controller for an application.

The sample application uses a servlet mapping to handle request URLs. The
servlet container maps all request URLs matching *.do to the main Web-tier con-

CHAPTER 4 THE WEB TIER100

DEA2e.book Page 100 Friday, March 8, 2002 12:31 AM
troller servlet, MainServlet.java. Another servlet mapping routes all URLs
matching *.screen to the templating service, which assembles composite views.

4.4.2.1.2 Invoking Model Methods

Once the controller has determined which operation to perform, it must invoke the
corresponding application model method with parameters derived from the request.
A naive controller design might use a large if-then-else statement, as shown in
Code Example 4.6.

if (op.equals("createUser")) {

model.createUser(request.getAttribute("user"),

request.getAttribute("pass"));

} else if (op.equals("changeUserInfo") {

// ... and so on...

}

Code Example 4.6 A Poorly Designed Controller

The if-then-else approach leads to a very large service method, which is
difficult to read and still more difficult to maintain. A better approach is to use the
Command pattern. The sample application defines an abstract class Action, which
represents a single application model operation. A controller can look up concrete
Action subclasses by name and delegate requests to them. Sample code for the
abstract class Action and a concrete class CreateUserAction appears in Code
Example 4.7.

// Action.java:

public abstract class Action {

protected Model model;

public Action(Model model) { this.model = model; }

public abstract String getName();

public abstract Object perform(HttpServletRequest req);

};

// CreateUserAction.java:

public class CreateUserAction extends Action {

public CreateUserAction(Model model) {

super(model);

WEB-TIER APPLICATION FRAMEWORK DESIGN 101

DEA2e.book Page 101 Friday, March 8, 2002 12:31 AM
}

public String getName() { return "createUser"; }

public Object perform(HttpServletRequest req) {

return model.createUser(req.getAttribute("user"),

req.getAttribute("pass"));

}

}

Code Example 4.7 An Abstract Action Class and a Concrete Subclass

Code Example 4.7 defines an abstract class Action, which has a name and a
perform method that executes a model method corresponding to the name. For
example, Action’s concrete subclass CreateUserAction has the name “cre-
ateUser”. Its perform method invokes the model method createUser using param-
eters extracted from the HTTP request.

public class ControllerServlet extends HttpServlet {

private HashMap actions;

public void init() throws ServletException {

actions = new HashMap();

CreateUserAction cua = new CreateUserAction(model);

actions.put(cua.getName(), cua);

//... create and add more actions

}

public void doPost(HttpServletRequest req,

HttpServletResponse resp)

throws IOException, ServletException {

// First identify operation "op" from URL.

// method getOperation() is defined elsewhere.

String op = getOperation(req.getRequestURL());

// Then find and execute corresponding Action

Action action = (Action)actions.get(op);

Object result = null;

try {

result = action.perform(req);

} catch (NullPointerException npx) {

//... handle error condition: no such action

CHAPTER 4 THE WEB TIER102

DEA2e.book Page 102 Friday, March 8, 2002 12:31 AM
}

// ... Use result to determine next view (see next section)

}

//... other methods...

}

Code Example 4.8 Using a Map to Identify and Execute Actions

Code Example 4.8 shows a controller servlet that maintains a hash map of
Action objects, each indexed by its name. When the servlet loads, the servlet con-
tainer calls the method init, which fills the hash map with Action objects that
invoke model operations. The hash map key is the name of the operation. Each
time the servlet’s service method receives a request, it identifies the name of the
operation to perform, looks up the corresponding Action in the hash map, and
executes it by invoking the Action’s perform method. The Action returns a result
object that the servlet uses, along with other data, to decide which view to display
next. When this controller receives a request containing the name createUser, it
finds an instance of CreateUserAction in the hash map. It then invokes the
Action’s perform method, which uses the model to create a user (as shown in
Code Example 4.7).

The code samples shown in this section are greatly simplified for clarity. The
Web Application Framework used by the sample application provides a full,
working example of this sort of controller called MainServlet. The servlet con-
tainer dispatches requests with a servlet mapping: it forwards all URLs matching
*.do to the MainServlet. Code Example 4.8 demonstrates how to provide an
extensible framework for dispatching client requests.

The sample application improves the extensibility of the servlet code in Code
Example 4.8 even further by externalizing the map of requests to actions. The
controller in the sample application initializes the actions hash map from an
external XML file, which contains pairs of operation names and corresponding
Action class names. The controller servlet initializes the action map with the
request names and action classes referred to in the XML file. The XML file is
deployed as a resource in the Web application archive. Adding a new Action is as
simple as adding a concrete Action subclass to the application archive and defin-
ing a configuration file mapping that associates the request URL with the action
class. An example of such a mapping appears in Code Example 4.9. With no code

WEB-TIER APPLICATION FRAMEWORK DESIGN 103

DEA2e.book Page 103 Friday, March 8, 2002 12:31 AM
modification, the sample application controller servlet can dispatch requests using
actions that did not even exist when the controller was written.

Dispatching service requests to the application model is only half of the Web-
tier controller’s job. It is also responsible for determining the next view to display.

4.4.2.1.3 Controlling Dynamic Screen Flow

The succession of views that a Web application user sees is called screen flow. A
Web-tier controller controls screen flow by selecting the next view a user sees. In
static Web sites, screens (usually Web pages) are statically linked to one another. By
contrast, a controller dynamically chooses the “next” screen in response to both user
actions and model operation results.

In this section, the term “view” means a Web resource with a URL from
which Web content is available. A view might be a JSP page, a servlet, static con-
tent, or some combination of the three, assembled into a page. Typically, the
“next” view to display depends on one or more of:

• The current view

• The results of any operation on the application model, returned by model
method invocations

• Possibly other server-side state, kept in PageContext, ServletRequest,
HttpSession, and ServletContext.

For example, the next view to display after a sign on view very likely depends
on:

• The current view

• The user id and password contained in the request

• The success or failure of the sign on operation, and

• Possibly other server-side state. Examples of such state might include a maxi-
mum number of allowed users (application scope), or the URL the user was
trying to access (request scope). See Section 4.4.7 on page 116 for a descrip-
tion of state and its scope.

The controller uses this data to determine which view to display next. A Web
controller “displays a view” by forwarding the request to a JSP page, servlet, or

CHAPTER 4 THE WEB TIER104

DEA2e.book Page 104 Friday, March 8, 2002 12:31 AM
other component that renders the view in a format compatible with the client; for
example, returning HTML to a browser.

The controller in the sample application uses two components to select and
generate views: a screen flow manager, which selects the next view to display; and
a templating service, which actually generates the view content. The controller
uses the screen flow manager to select a view, and forwards the request to the tem-
plating service, which assembles and delivers a view to the client. Both the screen
flow manager and the templating servlet are generic components that are usable in
any Web application. The component-based design reduces component coupling,
promoting code reuse and simplifying the controller design.

Figure 4.3 Web-Tier Controller OID

Figure 4.3 is an object interaction diagram that shows the Web-tier controller
interacting with other Web-tier classes. The diagram shows the following
sequence of calls:

1. The controller receives a POST from the client.

2. The controller creates an Action corresponding to the requested operation (as
described in the previous section).

3. The controller calls the Action’s perform method.

4. perform calls a model business method.

5. The controller calls the screen flow manager to select the next view to display.

WEB-TIER APPLICATION FRAMEWORK DESIGN 105

DEA2e.book Page 105 Friday, March 8, 2002 12:31 AM
6. The screen flow manager determines the next view and returns its name to the
controller.

7. The controller forwards the request to the templating service, which assembles
and delivers the selected view to the client.

Most request URLs map to a specific view URL. For example, the screen flow
map can define that the view signoff.screen always follows request URL
/signoff.do. Sometimes the next screen to display depends on model operation
results, server-side state, or user activity. For example, the next view following the
request URL /signin.do, which signs a user into the system, depends on whether
the sign in operation succeeded.

In the sample application, an application assembler configures the screen flow
manager with an XML-based file called a screen flow map. The screen flow map
defines a next view name for each request URL. For dynamic view selection, a
screen flow map can also map a request URL to a flow handler, which is a Java
class that selects the next view programmatically. Flow handlers are typically
written by component providers or application assemblers.

4.4.2.1.4 Example

The Web Application Framework screen flow map mappings.xml configures the
screen flow manager. Sample application Code Example 4.9 shows a URL action
mapping that uses a flow handler to determine the next view in code.

<url-mapping url="signoff.do" screen="signoff.screen">

<action-class>

com.sun.j2ee.blueprints.petstore.controller.web.actions.SignOffHT-

MLAction

</action-class>

</url-mapping>

Code Example 4.9 Excerpt from the Sample Application Screen Flow Map

In Code Example 4.9, the url-mapping element defines a mapping for request
URL /signoff.do. The action element declares an action of class Signoff-

HTMLAction, which performs the business logic for this URL (signing off a user).
An application assembler or a component provider wrote the action class
SignoffHTMLAction to sign a user off of the application. The screen attribute tells

CHAPTER 4 THE WEB TIER106

DEA2e.book Page 106 Friday, March 8, 2002 12:31 AM
the screen flow manager to display screen signoff.screen after the action com-
pletes.

Figure 4.4 shows the result of an HTTP POST to the URL /signoff.do.

Figure 4.4 OID of POST to Flow Handler Defined in Code Example 4.9

The servlet container deployment descriptor has a servlet mapping from
pattern *.do to the controller, so when a client POSTs a request to /verifysig-

nin.do, the following actions occur:

1. The servlet container routes the request to the controller.

2. The controller creates an instance class SignoffHTMLAction and passes the
request to it.

3. The controller calls the SignoffHTMLAction’s perform method.

4. The SignoffHTMLAction object calls the model method that signs the user out
of the application.

5. The controller asks the screen flow manager for the next view.

6. The controller forwards the request to the URL signoff.screen.

WEB-TIER APPLICATION FRAMEWORK DESIGN 107

DEA2e.book Page 107 Friday, March 8, 2002 12:31 AM
7. The templating servlet generates and delivers the requested view (a templated
JSP page) to the client, so the user receives a view indicating that signoff suc-
ceeded.

The last piece of the puzzle not yet explained is how to map a view name in
the design just described to an actual Web component (JSP page, servlet, and so
on). Views and templating are discussed in Section 4.4.3 on page 110.

4.4.2.2 Serving Multiple Client Types

Web applications may support only one type of client with a single protocol, or mul-
tiple clients with different protocols, security policies, presentation logic, and work-
flows. Web clients may include several versions of a few different browsers, MIDP
clients, so-called “rich” clients with stand-alone APIs, and Web service interfaces.
Long-lived applications may need to be able to handle new types of Web clients.

Each type of client needs its own controller, which specializes in the protocols
for that client type. A particular type of client may also need different presentation
components for form factor or other reasons.

Following are some options for how to service requests from clients that use
different application-level protocols. (Web-tier clients use HTTP for transport.)
Each of the following alternatives expands upon Figure 4.2 by adding flexibility
and increasing complexity.

Figure 4.5 Using a Front Controller to Handle Browser Interaction

Applications with a single client type can implement a single front controller.
For example, a browser-only application is shown in Figure 4.5. Its single Front
Controller servlet receives HTTP requests from the browser, translates the con-
tents of these requests into operations on the application model, and serves views
of result data as HTML (or XML). Additional controllers can support new client
types, as shown in Figure 4.6.

CHAPTER 4 THE WEB TIER108

DEA2e.book Page 108 Friday, March 8, 2002 12:31 AM
Figure 4.6 Supporting Multiple Client Types with Multiple Controllers

The multiple-controller approach in Figure 4.6 provides extensibility for any
future Web client types, including those that do not yet exist. In fact, because serv-
lets aren’t limited to HTTP, this architecture can support even non-Web clients.
Each controller can implement the workflow, presentation logic, and security con-
straints unique to its client type. Notice also that the code implementing the appli-
cation model is shared by all of the controllers. This separation of model and
controller ensures identical application behavior across client types and eases
maintenance and testing.

Some application functionality, particularly security, can be easier to manage
from a single point. Introducing a protocol router, as shown in Figure 4.7, can
provide a single point of control for all Web clients, each of which still retain their
own controllers.

WEB-TIER APPLICATION FRAMEWORK DESIGN 109

DEA2e.book Page 109 Friday, March 8, 2002 12:31 AM
Figure 4.7 Using a Protocol Router for Centralized Control

The protocol router in Figure 4.7 is either a servlet or servlet filter that deter-
mines the client type and dispatches the request to the appropriate controller. The
router typically uses the HTTP header User-agent to determine what sort of client
is requesting service. The protocol router can implement application-wide func-
tionality such as security or logging. The client-specific controllers can implement
behavior specific to each client’s particular protocol.

The Front Controllers in Figure 4.7 may or may not be servlets. If the Front
Controllers are servlets, the protocol router dispatches requests to them using
RequestDispatcher.forward. If the protocol router is a servlet, the Front Control-
lers can be a layer of simple objects to which the router delegates request process-
ing.

Note that the controller alternatives shown in the last few figures can be
implemented incrementally. Each of the approaches can be built on the preceding
one. The BluePrints recommendation is to adopt and adapt the alternative that
most closely matches current application requirements, and add new functionality
as necessary.

Templating is an application of the Composite View design pattern, discussed
in Chapter 11, which builds a page from a number of independent view compo-
nents.

CHAPTER 4 THE WEB TIER110

DEA2e.book Page 110 Friday, March 8, 2002 12:31 AM
4.4.3 Web-Tier MVC View Design

MVC views display data produced by the MVC model. View components (also
known as “presentation components”) in the Web tier are usually JSP pages and
servlets, along with such static resources as HTML pages, PDF files, graphics, and
so on. JSP pages are best used for generating text-based content, often HTML or
XML. Servlets are most appropriate for generating binary content or content with
variable structure. (For an in-depth explanation of appropriate technology usage, see
Section 4.2.6.1 on page 82 and Section 4.2.6.4 on page 86.)

HTML browsers are very lightweight clients, so the Web tier generates and
often styles dynamic content for browsers. Heavyweight clients can implement
relatively more view functionality in the Client tier, and less in the Web tier. Such
clients include stand-alone rich clients, application clients, and clients that use
special content formats such as MacroMedia Flash or Adobe Portable Document
Format (PDF).

Web-tier components are not limited to serving HTML-over-HTTP Web
browsers. The Web tier may also serve MIDP clients using proprietary protocols,
rich clients using XML, or Web service peers requesting services with Electronic
Business XML (ebXML) or Simple Object Access Protocol (SOAP) messages.
Each of these examples uses a different application-level protocol, while using
HTTP for transport. A properly designed Web tier unifies access to application
functionality for any client type. The Web tier also provides virtual session man-
agement for some client types.

See Chapter 3 for more on J2EE client technologies.

4.4.3.1 Templating

One typical application requirement is that application views have a common
layout. A template is a presentation component that composes separate subviews
into a page with a specific layout. Each subview, such as a banner, a navigation bar,
or document body content, is a separate component. Views that share a template
have the same layout, because the template controls the layout.

WEB-TIER APPLICATION FRAMEWORK DESIGN 111

DEA2e.book Page 111 Friday, March 8, 2002 12:31 AM
For example, Figure 4.8 shows the layout of a single page created by a tem-
plate. Across the top of the page is a banner, on the left is a navigation menu, a
footer appears at the bottom, and the body content occupies the remaining space.

Figure 4.8 A Template Composes Other Views into a Consistent Layout

Using templates in an application design centralizes control of the overall
layout of pages in the application, easing maintenance. Changing the layout in the
template file changes the page layout for the entire application. More importantly,
the individual subviews (like the “Navigation Menu” in Figure 4.8) are used by
reference in the template instead of by copy-and-paste. Therefore, changing a
subview means changing a single source file instead of changing all the files in
which that subview occurs.

Template implementation is most easily explained by example. In the sample
application, a JSP page called a template file specifies the page layout. The tem-
plate file is a standard JSP page that uses custom tags to include subviews into
each area of the page. The template references the individual subviews by name.

Code Example 4.10 is an example from the sample application that produces
the layout shown in Figure 4.8. This file, called template.jsp, is a JSP page that
produces HTML. The file specifies the page layout as standard HTML tags, and

CHAPTER 4 THE WEB TIER112

DEA2e.book Page 112 Friday, March 8, 2002 12:31 AM
includes the content of other JSP pages using the custom tag insert, shown
underlined in the code example.

<%@ taglib uri="/WEB-INF/tlds/taglib.tld" prefix="template" %>

<html>

<head>

 <title><template:insert parameter="title" /></title>

</head>

<body bgcolor="#FFFFFF">

<table width="100%" border="0" cellpadding="5" cellspacing="0">

 <tr>

 <td colspan="2">

<template:insert parameter="banner" />

 </td>

 </tr>

 <tr>

 <td width="20%" valign="top">

<template:insert parameter="sidebar" />

 </td>

<!--- ... and so on ... -->

Code Example 4.10 The Template JSP Page for the Layout Shown in Figure 4.8

The JSP page includes the page named by the insert tag’s parameter

attribute at the point where the tag occurs. A separate screen definitions file for the
application provides values for these parameters for each screen name.

The templating service is a single servlet that processes all screens. A servlet
mapping routes all requests with URLs matching *.screen to a TemplateServlet,
which assembles and serves the requested screen. Code Example 4.11 shows the
definition of the screen called main.screen. The screen definitions file defines
template.jsp as its template file and defines a series of screens. Each screen has a
name and a list of values for the parameters in the template file. The templating
service replaces each insert tag in the template file with the contents of the
subview named by the tag’s parameter attribute. For example, the templating
service replaces all instances of <template:insert parameter="banner"/> with
the contents of "/banner.jsp". The result is a fully-rendered screen.

WEB-TIER APPLICATION FRAMEWORK DESIGN 113

DEA2e.book Page 113 Friday, March 8, 2002 12:31 AM
<screen-definitions>

 <template>/template.jsp</template>

 <screen>

<screen-name>main</screen-name>

<parameter key="title">Welcome to the BluePrints Petstore</pa-

rameter>

<parameter key="banner" value="/banner.jsp"/>

<parameter key="sidebar" value="/sidebar.jsp"/>

<parameter key="body" value="/main.jsp"/>

<parameter key="mylist" value="/mylist.jsp"/>

<parameter key="advicebanner" value="/advice_banner.jsp"/>

<parameter key="footer" value="/footer.jsp"/>

</screen>

<!-- ... more screen definitions... -->

</screen-definitions>

Code Example 4.11 Screen Definition of Sample Application’s “Main” View

The templating service described here is part of the sample application’s Web
Application Framework. The templating service is reusable as a component in
other applications. Its design is based on the Composite View design pattern,
which assembles a view from reusable subviews. For more information on the
Composite View design pattern, please see Chapter 11.

4.4.4 Web-Tier MVC Model Design

An MVC application model both represents business data and implements business
logic. Many J2EE applications implement their application models as enterprise
beans, which offer scalability, concurrency, load balancing, automatic resource
management, and other benefits. Simpler J2EE applications may implement the
model as a collection of Web-tier JavaBeans components used directly by JSP pages
or servlets. JavaBeans components provide quick access to data, while enterprise
beans provide access to shared business logic and data.

Notice that the “application model” in Figure 4.5 on page 107 is generic: It
implies no particular technology or tier. The application model is simply the pro-
grammatic interface to the application’s business logic. Model API design and
model technology selection are both important design considerations.

CHAPTER 4 THE WEB TIER114

DEA2e.book Page 114 Friday, March 8, 2002 12:31 AM
Section 11.4.1.2 on page 369 describes MVC model design considerations
and patterns.

4.4.5 Web Application Frameworks

As the Model 2 architecture has become more popular, quite a number of Web-tier
application frameworks have appeared. Some are vendor-specific frameworks inte-
grated with specific servers and tools; others are freely available, open-source
projects. Benefits of Web-tier application frameworks appear on page 93. Three
frameworks of particular interest are:

• J2EE BluePrints Web Application Framework (“WAF”)—The Web Ap-
plication Framework forms the infrastructure of the sample application. This
framework offers a Front Controller servlet, an abstract action class for Web-
tier actions, a templating service, several generic custom tags, and internation-
alization support. WAF demonstrates both the mechanisms and effective use
of a Web-tier framework layer in an application design. It is suitable for small,
non-critical applications, and for learning the principles of Web-tier applica-
tion framework design and usage.

• Apache Struts—Struts is a free, open-source, Web-tier application framework
under development at the Apache Software Foundation. Struts is highly con-
figurable, and has a large (and growing) feature list, including a Front Control-
ler, action classes and mappings, utility classes for XML, automatic population
of server-side JavaBeans, Web forms with validation, and some international-
ization support. It also includes a set of custom tags for accessing server-side
state, creating HTML, performing presentation logic, and templating. Some
vendors have begun to adopt and evangelize Struts. Struts has a great deal of
mindshare, and can be considered an industrial-strength framework suitable
for large applications. But Struts is not yet a “standard” for which J2EE prod-
uct providers can interoperably and reliably create tools.

• JavaServer Faces—A Java Community Process effort (JSR-127) is currently
defining a standardized Web application framework called JavaServer Faces.
Current standard Web-tier technologies offer only the means for creating gen-
eral content for consumption by the client. There is currently no standard
server-side GUI component or dispatching model. JavaServer Faces will be an
architecture and a set of APIs for dispatching requests to Web-tier model
JavaBeans; for maintaining stateful, server-side representations of reusable

WEB-TIER APPLICATION FRAMEWORK DESIGN 115

DEA2e.book Page 115 Friday, March 8, 2002 12:31 AM
HTML GUI components; and for supporting internationalization, validation,
multiple client types, and accessibility. Standardization of the architecture and
API will allow tool interoperation and the development of portable, reusable
Web-tier GUI component libraries.

4.4.6 Separating Business Logic from Presentation

Placing business logic and presentation code in separate software layers is good
design practice. The business layer provides only application functionality, with no
reference to presentation. The presentation layer presents the data and input prompts
to the user (or to another system), delegating application functionality to the busi-
ness layer.

Separating business logic from presentation has several important benefits:

• Minimizes impact of change—Business rules can be changed in their own
layer, with little or no modification to the presentation layer. Application pre-
sentation or workflow can change without affecting code in the business layer.

• Increases maintainability—Most business logic occurs in more than one use
case of a particular application. Business logic copied and pasted between
components expresses the same business rule in two places in the application.
Future changes to the rule require two edits instead of one. Business logic ex-
pressed in a separate component and accessed referentially can be modified in
one place in the source code, producing behavior changes everywhere the com-
ponent is used. Similar benefits are achieved by reusing presentation logic with
server-side includes, custom tags, and stylesheets.

• Provides client independence and code reuse—Intermingling data presenta-
tion and business logic ties the business logic to a particular type of client. For
example, business logic implemented in a scriptlet is not usable by a servlet or
an application client; the code must be reimplemented for the other client
types. Business logic that is available referentially as simple method calls on
business objects can be used by multiple client types.

• Separates developer roles—Code that deals with data presentation, request
processing, and business rules all at once is difficult to read, especially for a
developer who may specialize in only one of these areas. Separating business
logic and presentation allows developers to concentrate on their area of
expertise.

CHAPTER 4 THE WEB TIER116

DEA2e.book Page 116 Friday, March 8, 2002 12:31 AM
4.4.7 Web-Tier State

Data that a Web-tier component uses to create a response is called state. Examples
of such data include the inventory data needed by a JSP page that lists items for sale,
the contents of an online shopping cart maintained by a servlet, and the timestamp
placed on an incoming request by a servlet filter.

State maintenance decisions have an enormous impact on application perfor-
mance, availability, and scalability. Such decisions include choosing the tier to
manage state, selecting the appropriate scope for each item of state, and effectively
tracking conversational state in a distributed environment.

Note that the J2EE platform specification does not require that session state be
recoverable after a crash or restart of a component container. Some J2EE imple-
mentations provide, as an extension, containers that can recover session state after
a restart. Choosing such an implementation can simplify application design, but
makes an application less portable, because it relies on a non-standard extension.

4.4.7.1 State Scope

Each item of Web-tier state has scope, which determines the accessibility and life-
time of the item. Web-tier state is accessible to servlets, servlet filters, and JSP
pages. Briefly, Web-tier state can be maintained in four scopes:

Application scope is “global memory” for a Web application. Application-
scope state is stored in the Web container’s ServletContext object. (See the
caveat on using context attributes in distributable servlets on page 126.) All serv-
lets in an application share objects in application scope. The servlet developer is
responsible for thread safety when accessing objects in application scope. An
inventory object in application scope, for example, is accessible to all servlets,
servlet filters, and JSP pages in the application. State in application scope exists
for the lifetime of the application, unless it is explicitly removed.

Session scope contains data specific to a user session. HTTP is a “stateless”
protocol, meaning that it has no way of distinguishing users from one another or
for maintaining data on users’ behalf. Session attributes are named object refer-
ences that are associated with a user session. The servlet API allows a developer
to create a session attribute and access or update it in subsequent requests.
Session-scope state for an HttpServlet is stored in the Web container’s HttpSes-

sion object (available from the HttpServletRequest argument to the service

method). State in session scope is accessible to all Web components in the appli-
cation and across multiple servlet invocations. However, it is accessible only
within an individual user session. An online shopping cart is an example of data in

WEB-TIER APPLICATION FRAMEWORK DESIGN 117

DEA2e.book Page 117 Friday, March 8, 2002 12:31 AM
session scope, because the contents of the cart are specific to a single client
session and available across multiple server requests. A session ends when it is
explicitly closed, when it times out after a period of inactivity, or when its con-
tainer is shut down or crashes. Unless removed explicitly, state in session scope
lasts until the session ends.

Request scope contains data specific to an individual server request, and is
discarded when the service method returns. A Web component can read or
modify data in request scope and then “forward” the request to another compo-
nent. The component to which the request is forwarded then has access to the
state. State in request scope is stored in a ServletRequest object, so it is accessi-
ble to any component receiving the request. Note that the values of query string
parameters and form variables are also in request scope. For example, when a
servlet places a timestamp in a ServletRequest and then forwards the request to
another servlet, the timestamp is in request scope.

Page scope, applicable only to JSP pages, contains data that are only valid in
the context of a single page. Page scope state is stored in a JSP page’s PageCon-

text object. When one JSP page forwards to or includes another, each page
defines its own scope. Page scope state is discarded when the program flow of
control exits the page.

4.4.7.2 Performance Implications of State Scope

Selecting the appropriate scope for an item of state depends largely on the purpose
of that item in the application. It would not make sense, for example, to place a
shopping cart class in application scope, because then all shoppers would have to
share the same cart. Shopping carts, because they are specific to a user session, are
most appropriately kept in session scope. But shopping cart contents maintained in
Client-tier cookies would be in request scope, because they would be transmitted to
the Web tier with each request. Maintaining session state in cookies is discouraged,
even though this approach may be more easily scalable than using session attributes.
See “Avoid Using Cookies Directly,” starting on page 122 for more details.

Each state scope has implications for scalability, performance, and reliability.
State in page or request scope is less likely to cause trouble, since such data are
usually not large or long-lived enough to cause resource problems. State in appli-
cation scope is usually manageable if it is read-only. Entity enterprise beans are
the recommended technology for maintaining writable application-scope state.
Entity beans are designed for scalable, concurrent access to shared data and logic.
See Section 5.4 on page 142 for more information.

CHAPTER 4 THE WEB TIER118

DEA2e.book Page 118 Friday, March 8, 2002 12:31 AM
State in session scope has the greatest impact on Web application scalability
and performance. Separate session-scope state accumulates for each connected
user, unlike application-scope state, which is shared between all users and serv-
lets. Also, session-scope state exists across requests, unlike request-scope state,
which is discarded when a response is served.

4.4.7.2.1 How the Web Container Manages Session State

Application servers typically track user sessions with some combination of cookies
and/or URL rewriting to store a session ID on the client. The session ID identifies
the session, and the server is responsible for associating each HttpServletRequest

with its corresponding HttpSession object. The J2EE server handles the details of
using cookies and URL rewriting. The section “Maintaining Client State” in The
J2EE Tutorial explains in detail how to manage Web-tier session state.

4.4.7.3 Web-Tier State Recommendations

When using enterprise beans, it’s best to maintain session state with stateful session
beans in the EJB tier. For Web-only applications, maintain the state in the Web tier
as session attributes (using HttpSession). The following sections discuss the ratio-
nale for these recommendations.

4.4.7.3.1 Maintain Session State with Stateful Session Beans

Maintaining session state in stateful session beans is a BluePrints best practice.
Web-tier components can access the session state through the stateful session bean’s
component interface and store just the reference as a session attribute. You can max-
imize the runtime performance of this approach by choosing a J2EE server product
that permits use of local EJB interfaces from co-located Web components.

Reasons to prefer stateful session beans over other approaches to maintaining
session state include:

• Thread safety—Enterprise beans are thread-safe. By contrast, sophisticated
thread-safe servlets are difficult to write.

• Lifecycle management—The EJB container manages the lifecycle of enter-
prise beans components, automatically creating new instances, and activating
and passivating instances as necessary to optimize performance.

WEB-TIER APPLICATION FRAMEWORK DESIGN 119

DEA2e.book Page 119 Friday, March 8, 2002 12:31 AM
• Client type neutrality—Enterprise beans can be accessed, either directly or
through some sort of adapter, from multiple client types. This contrasts with
HTTP session attributes, which are available only to HTTP clients.

For example, the sample application stores session state in stateful session
beans ShoppingClientControllerEJB and EJBClientControllerEJB. For more on
stateful session beans, see Chapter 5.

4.4.7.3.2 Maintain Web-Tier Session State in Session Attributes

Applications that don’t use enterprise beans should maintain session state in session
attributes, using HttpSession’s methods getAttribute and setAttribute. These
methods allow the Web container to maintain the state in a way that is most effective
for that particular application and server. Session attributes free the developer from
the details of session state management, and ensure portability and scalability of
Web components.

The alternative to using session attributes is to create your own solution. The
Web container (via HttpSession) provides services such as cookie management,
session IDs, and so on. Writing custom Web-tier state management code is usually
redundant. Don’t make work for yourself!

For more guidelines, see Section 4.4.7 on page 116, and also the section
“Maintaining Client State” in The J2EE Tutorial.

Advantages of using session attributes include:

• Easy implementation—Because the application server handles the imple-
mentation of HttpSession, the developer is freed from bothering with the de-
tails of designing, implementing, and testing code for managing session state.

• Optimization—An application server's HttpSession implementation is opti-
mized and tested for that server, and therefore will probably be more efficient
and reliable than a custom solution.

• Potentially richer feature set—An application server’s implementation of
session state management may include such features as failover, cluster sup-
port, and so on, that go beyond the base-level requirements of the J2EE plat-
form specifications. The system architect can select a server platform with the
differentiating features that best suit application requirements, while maintain-
ing J2EE technology compatibility and portability.

CHAPTER 4 THE WEB TIER120

DEA2e.book Page 120 Friday, March 8, 2002 12:31 AM
• Portability—The HttpSession interface is standardized, so it must pass the
J2EE Compatibility Test Suite (CTS) across all J2EE-branded application
servers. For more on the role of the CTS and J2EE branding, see the compati-
bility reference listed in “References and Resources” on page 127.

• Scalability—HttpSession can most effectively manage storage of Web-tier
session state in caches and/or server clusters.

• Evolvability—Application server vendors are constantly improving their of-
ferings. Servers will maintain existing interfaces for backward compatibility,
even as they add features that improve performance and reliability. An
HttpSession implementation that works properly today will work better to-
morrow as improved server versions become available, with little or no change
to the source code.

But session attributes have these important disadvantages:

• Limited to Web clients—The Web tier is by definition limited to servicing
Web clients, so HttpSession interface is limited to HTTP communications.
Other client types will require reimplementation of session state management.

• Session state not guaranteed to survive Web container crashes—Some ap-
plication servers maintain persistent session state or provide failover, so ses-
sions can span container crashes or restarts. But not all servers support that
functionality, because the specification doesn’t require it. As a result, restart-
ing a container can invalidate all sessions in progress, losing all of their state.
If this is a problem for your application, either consider selecting a server that
provides persistent sessions or session failover (which compromises portabili-
ty), or consider storing session state in the EIS tier.

4.4.7.3.3 Share Data among Servlets and JSP Pages with JavaBeans Components

The standard JSP tag useBean accesses an attribute in application, session, request,
or page scope as a JavaBean component. Standard actions setProperty and
getProperty get and set the attributes’ properties using JavaBeans property acces-
sors. Servlets have access to these attributes as well, so data shared between JSP
pages and servlets is best maintained in JavaBeans classes. Code Example 4.12
shows a servlet setting a session-scope attribute of type UserDataBean, naming it
UserData.

WEB-TIER APPLICATION FRAMEWORK DESIGN 121

DEA2e.book Page 121 Friday, March 8, 2002 12:31 AM
public void service(HttpServletRequest req,

HttpServletResponse res) throws... {

HttpSession session = req.getSession();

UserDataBean userData = new userData;

userData.setName("Moliere");

session.setAttribute("userData", userData);

...

Code Example 4.12 Setting a Session Attribute’s Value to a JavaBean Instance

When servlets are called, or the same servlet is called again, it can access the
UserDataBean using the method HttpSession.getAttribute, as shown in Code
Example 4.13.

HttpSession session = req.getSession();

UserDataBean userData = (UserDataBean)session.getAttribute("userDa-

ta");

String userName = userData.getUsername();

Code Example 4.13 Accessing a Session Attribute JavaBean Instance from a Servlet

A JSP page can access the UserDataBean using the standard tag useBean, as
shown in Code Example 4.14. This creates the named JavaBean instance if it does
not already exist. The remainder of Code Example 4.14 shows how to get or set
the properties of the userData attribute by using getProperty and setProperty.

<!-- Declare that the page uses session attribute UserData -->

<jsp:useBean id="userData" type="UserDataBean" scope="session"/>

<!-- get the userData property userData-->

<jsp:getProperty name="userData" property="username"/>

<!-- set all userData properties to values of corresponding

request parameter names -->

<jsp:setProperty name="userData" property="*"/>

<!-- set userData property "username" to value of request

parameter "username" -->

CHAPTER 4 THE WEB TIER122

DEA2e.book Page 122 Friday, March 8, 2002 12:31 AM
<jsp:setProperty name="userData" property="username"/>

<!-- set userData property "username" to value of request

parameter "new_user_name" -->

<jsp:setProperty name="userData" property="username"

param="new_user_name"/>

<!-- set userData property "username" to string "Unknown User" -->

<jsp:setProperty name="userData" property="username"

value="Unknown User"/>

Code Example 4.14 Using JavaBean Properties in a JSP Page

These examples show how to share information between components in
session scope. These techniques work similarly for application, page, and request
scopes.

4.4.7.3.4 Avoid Using Cookies Directly

Avoid using cookies directly for storing session state in most applications. Imple-
mentation details of session state storage are best left to the application server. Using
either a stateful session bean or a Web container’s HttpSession implementation can
provide reliable access to session state through a portable interface. Using the stan-
dard interface saves the development time of implementing and maintaining a
custom solution.

Disadvantages to using cookies for session state include:

• Cookies are controlled by a low-level API, which is more difficult to use than
the other approaches.

• All data for a session are kept on the client. Corruption, expiration, or purging
of cookie files can result in incomplete, inconsistent, or missing information.

• Size limitations on cookies differ by browser type and version, but the least-
common-denominator approach limits the maximum cookie size to 4,096
bytes. This limitation can be eliminated by storing just references to data (ses-
sion ids, user ids, and so on) in cookies, and retrieving the data as necessary
from another tier (at the cost of increased server complexity and resource
usage).

WEB-TIER APPLICATION FRAMEWORK DESIGN 123

DEA2e.book Page 123 Friday, March 8, 2002 12:31 AM
• Servlets and JSP pages that rely exclusively on cookies for client-side session
state will not operate properly for all clients. Cookies may not be available for
many reasons: The user may have disabled them, the browser version may not
support them, the browser may be behind a firewall that filters cookies, and so
on.

• Because Web clients transmit to a server only those cookies that it created by
that server, servers with different domain names can’t share cookie data. For
example, JavaPetStore.com may want to allow users to shop from their own
shopping sites, as well as from JavaPetFood.com. But because JavaPet-
Food.com can’t access JavaPetStore.com’s cookies, there’s no easy way to
unify the shopping sessions between the two servers.

• Historically, cookie implementations in both browsers and servers have tended
to be buggy, or vary in their conformance to standards. While you may have
control of your servers, many people still use buggy or nonconformant ver-
sions of browsers.

• Browser instances share cookies, so users cannot have multiple simultaneous
sessions.

• Cookies work only for HTTP clients, because they are a feature of the HTTP
protocol. Notice that while package javax.servlet.http supports session
management (via class HttpSession), package javax.servlet has no such
support.

Exceptions to this guideline exist. For example, a browser cookie could
contain a user’s login name and locale to facilitate sign on. Because of the draw-
backs described here, cookies should be used to maintain session state only when
there is a clear reason to do so.

4.4.8 Distributable Web Applications

The J2EE platform provides optional support for distributed Web applications. A
distributed Web application runs simultaneously in multiple Web containers. When
a Web application is marked distributable in its deployment descriptor, the con-
tainer may (but is not required to) create multiple instances of the servlet, in multiple
JVM instances, and potentially on multiple machines. Distributing a servlet
improves scalability, because it allows Web request load to be spread across multi-

CHAPTER 4 THE WEB TIER124

DEA2e.book Page 124 Friday, March 8, 2002 12:31 AM
ple servers. It can also improve availability by providing transparent failover
between servlet instances.

4.4.8.1 Distributed Servlet Instances

By default, only one servlet instance per servlet definition is allowed for servlets that
are neither in an application marked distributable, nor implement
SingleThreadModel. Servlets in applications marked distributable have exactly
one servlet instance per servlet definition for each Java virtual machine (JVM). The
container may create and pool multiple instances of a servlet that implements
SingleThreadModel, but using SingleThreadModel is discouraged.

At any particular time, session attributes for a given session are local to a par-
ticular JVM. The distributed runtime environment therefore acts to ensure that all
requests associated with a given session are handled by exactly one JVM at a
time. A servlet’s session state may migrate to, or be failed-over to, some other
JVM between requests.

4.4.8.2 Distributed Conversational State

Distributing multiple instances of a servlet across multiple JVM instances raises the
issue of how to support conversational state. If each request a user makes can be
routed to a different server, how can the system track that user’s session state?

J2EE product providers solve this problem in different ways. One approach,
called sticky server affinity, associates a particular client with a particular servlet
instance for the duration of the session. This solves the session state problem,
because each session is “owned” by a particular servlet. But this approach can
compromise availability, because when a servlet, JVM instance, or server crashes,
all of the associated sessions can be lost. Sticky server affinity can also make load
balancing more difficult, because sessions are “stuck” on the servers where they
started.

Another approach to solving the distributed conversational state problem is
state migration. State migration serializes and moves or copies session state
between servlet instances. This solution maintains the availability benefits of
servlet distribution and facilitates load balancing, because sessions can be moved
from more- to less-loaded servers. But state migration can increase network traffic
between clustered servers. Each time a client updates session state, all redundant
copies of that state must be updated. If session state is stored in a database (as is
often the case), the database can become a performance bottleneck. The contain-

WEB-TIER APPLICATION FRAMEWORK DESIGN 125

DEA2e.book Page 125 Friday, March 8, 2002 12:31 AM
ers must also cooperate to resolve simultaneous update collisions, where two
clients accessing the same session (one browser window opened from another, for
example) update different copies of the same session state.

The J2EE platform specification gives the J2EE product provider the opportu-
nity to add value by solving the issue of distributed conversational state in the
implementation while maintaining the consistent J2EE interface. A good solution
to this problem can be a selling point for a J2EE vendor. Designers considering a
Web-tier-only architecture for high-performance applications should be sure to
understand how prospective J2EE product providers address this issue.

Stateful session beans are designed specifically for handling distributed con-
versational state, but do so in the EJB tier, rather than in the Web tier. See Section
4.4.7.3.1 for more details.

4.4.8.3 Distributable Servlet Restrictions

Servlets used in a distributable application require some additional constraints. Most
are necessary conditions for session state migration. These restrictions also apply
for code in JSP pages and custom tags.

• Session attributes must be either serializable or supported in distributed
sessions by the Web container—The Web container must accept instances of
serializable classes as session attributes. A container must also accept a few
other J2EE object types as session attributes: enterprise bean home and remote
references, transaction contexts (javax.transaction.UserTransaction), and
the JNDI context object for java:comp/env (javax.naming.Context). For any
other types, the container may throw an IllegalArgumentException to indi-
cate that the object cannot be moved between JVMs.

Implementing Serializable in a session attribute does not guarantee that the
container will use native Java serialization. The container is also not required
to use any defined custom serialization methods, such as readObject or
writeObject, that the class may define. It does ensure that session attribute val-
ues are preserved if the session is migrated. See Section 7.2.2 of the Java Servlet
specification 2.3, and Section J2EE.6.5 of the J2EE platform specification 1.3 for
more details.

• Don’t store application state in static or instance variables—Web contain-
ers are not required to maintain static or instance variable values when a ses-
sion migrates. Code that depends on state stored in such variables will likely

CHAPTER 4 THE WEB TIER126

DEA2e.book Page 126 Friday, March 8, 2002 12:31 AM
not operate properly after session migration. Such state should be stored either
as a session attribute, in an enterprise bean, or in a database.

• Don’t use context attributes to share state between servlets—Context
attributes are stored in ServletContext and are shared by all servlets in a Web
application. But context attributes are specific to the JVM instance in which
they were created. Servlets that communicate by sharing context attributes
may not operate properly if distributed, because context attributes do not rep-
licate between Web containers in different JVM instances. To share data be-
tween distributed servlets, place the data in a session object, store it in the EIS
tier in a database or distributed cache, or use an enterprise bean.

One exception to this guideline is to use context attributes as a shared data
cache between the servlets in each Web container. Cache hits and misses affect
only an application’s performance, not its behavior.

• Don’t depend on servlet context events or HTTP session events—The Web
container is not required to propagate such events between containers in a dis-
tributed environment.

4.5 Summary

The Web tier of the J2EE platform makes J2EE applications available on the World
Wide Web. JSP pages and servlets are Web components that supersede legacy tech-
nologies by providing portable high-level system services. These services include
transactions, data access, state maintenance, security, and distribution. Using custom
tags and standard tag libraries in JSP pages improves code quality and eases mainte-
nance.

The Model-View-Controller (MVC) architectural design pattern is recom-
mended for most interactive Web applications. MVC makes application function-
ality more reusable, and simplifies adding and modifying client types, data views,
and workflow.

A Model 1 application is a set of JSP pages that are statically linked to one
another. A Model 2 application has a centralized controller that dynamically per-
forms request dispatching and view selection. Model 2 is the preferred architec-
ture for Web applications, because it provides more flexibility and is more
maintainable than a Model 1 design.

A Web-tier application framework is a domain-neutral layer of services,
usually based on MVC, that simplifies constructing an interactive Web applica-

REFERENCES AND RESOURCES 127

DEA2e.book Page 127 Friday, March 8, 2002 12:31 AM
tion. Such a framework can reduce an application’s time-to-market, improve code
quality, and ease maintenance. It’s usually preferable to choose an existing frame-
work rather than to build one.

The simplest framework design has a single controller that receives requests
from browsers, dispatches calls to an application model, and displays results.
Multiple controllers can support multiple types of Web-tier clients by communi-
cating with them in their native protocols. A protocol router provides a single
point of control for application-wide services such as security and logging.

A Web-tier templating mechanism can improve page layout consistency. The
templating mechanism uses a template file to assemble individual views into a
single composite view. A template file specifies layout for a set of composite
views. Templating makes an application more flexible and makes content more
reusable.

Servlets are useful for implementing application services, generating binary
content, and controlling applications. JSP pages are best for creating textual
content with embedded references to external data. Servlet filters can extend the
functionality of an existing servlet, JSP page, or servlet filter.

Web application state resides in either application scope, session scope,
request scope, or page scope. State in session scope has the greatest impact on
scalability, because its size is proportional to the number of users. Using a stateful
session bean is the recommended way to maintain session-scope state. Web-only
applications should store session-scope state in HTTP session attributes.

Some J2EE products allow a Web application to be distributed for improved
scalability and availability. How a platform implementation manages load in a dis-
tributed application is vendor-specific. JSP pages, custom tags, and servlets in a
distributed Web application must follow additional programming restrictions.

4.6 References and Resources

For tutorials on using APIs described in this chapter, see the Web Technology section
of:

• The J2EE Tutorial. S. Bodoff, D. Green, K. Haase, E. Jendrock, M. Pawlan, B.
Stearns. Copyright 2002, Addison-Wesley. Also available online at <ht-
tp://java.sun.com/j2ee/tutorial>

• Core J2EE Patterns: Best Practices and Design Strategies. D. Alur, J. Crupi,
D. Malks. Copyright 2001, Prentice-Hall PTR.

CHAPTER 4 THE WEB TIER128

DEA2e.book Page 128 Friday, March 8, 2002 12:31 AM
• The JavaTM Servlet 2.3 and JavaServer PagesTM 1.2 specifications
(JSR-53) are available for download in PDF format at
<http://www.jcp.org/aboutJava/communityprocess/final/jsr053/>

• For information on compatibility and the CTS, see
<http://java.sun.com/j2ee/compatibility.html>

• The Apache Struts project can be found at
<http://jakarta.apache.org/struts/index.html>

• The Apache Jakarta taglibs are available at
<http://jakarta.apache.org/taglibs/index.html>

DEA2e.book Page 129 Friday, March 8, 2002 12:31 AM
C H A P T E R 5

The Enterprise JavaBeans

Tier
by Inderjeet Singh, Linda DeMichiel, and Beth Stearns

IN a multitier J2EE application, the Enterprise JavaBeans (EJB) tier hosts applica-
tion-specific business logic and provides system-level services such as transaction
management, concurrency control, and security. Enterprise JavaBeans technology
provides a distributed component model that enables developers to focus on solving
business problems while relying on the J2EE platform to handle complex system-
level issues. This separation of concerns allows rapid development of scalable,
accessible, robust, and highly secure applications. In the J2EE programming model,
EJB components are a fundamental link between presentation components hosted
by the Web tier and business-critical data and systems maintained in the enterprise
information system tier.

This chapter describes the concepts central to the Enterprise JavaBeans archi-
tecture and provides guidelines and recommendations to best use EJB compo-
nents. The chapter:

• Examines the nature of business logic and describes the problems a developer
needs to resolve when implementing business logic

• Describes the component model that Enterprise JavaBeans architecture pro-
vides to address these problems

• Describes remote and local client views

• Provides details on the three types of enterprise beans: entity beans, session
beans, and message-driven beans
129

CHAPTER 5 THE ENTERPRISE JAVABEANS TIER130

DEA2e.book Page 130 Friday, March 8, 2002 12:31 AM
• Recommends design guidelines for developing EJB components and applica-
tions

• Presents recommendations and practices to best utilize the EJB tier services
provided by the J2EE platform

• Provides guidelines to facilitate application portability

5.1 Business Logic and Business Objects

Business logic, in a very broad sense, is the set of procedures or methods used to
manage a specific business function. Taking the object-oriented approach enables
the developer to decompose a business function into a set of components or ele-
ments called business objects. Like other objects, business objects have both state
(or data) and behavior. For example, an employee object has data such as a name,
address, social security number, and so on. It has methods for assigning it to a new
department or for changing its salary by a certain percentage. To manage a business
problem you must be able to represent how such business objects function and inter-
act to provide the desired functionality. The set of business-specific rules that help
identify the structure and behavior of the business objects, along with the pre- and
post-conditions that must be met when an object exposes its behavior to other
objects in the system, is known as business logic.

The following discussion demonstrates how to define the structure and behav-
ior of a business object from the requirements imposed by the business problem it
addresses. For example, the sample application uses a group of business objects:

• A catalog object to show available pets

• A shopping cart object to temporarily hold a client’s selection of pets

• An account object to keep information about a client

• Order objects to keep track of placed orders

Using the account object as an example, its requirements include:

1. Each client must have a unique account.

2. Each account should have contact information for a client such as name, street
address, and e-mail address.

BUSINESS LOGIC AND BUSINESS OBJECTS 131

DEA2e.book Page 131 Friday, March 8, 2002 12:31 AM
3. Clients must be able to create new accounts and close (or remove) accounts.

4. Clients must be able to update contact information for their accounts.

5. Clients must be able to retrieve information for their accounts.

6. Clients can retrieve and update only their own account information.

7. The account information must be maintained in persistent storage.

8. Multiple clients must be able to access their account information at the same
time.

9. Multiple clients cannot update the same account concurrently.

The first two requirements specify the structural attributes of the account
object. Following these rules, the account object should have a field to hold
account identification and several other fields to hold address, phone, and other
contact information.

The behavior of the account object is described in requirements three, four,
and five. For example, accounts should have methods to create a new account, to
update contact information, and to get the account information.

The last four requirements specify general conditions that must be met so that
the account object can properly carry out its functionality. For example, when a
client updates an account, the client should be authorized to access that particular
account and updated account information should be written to persistent storage.
No other client should be able to access the particular account concurrently.

Similar analysis and requirement definitions could be performed for other
objects. For example, an order object has a set of general conditions on its behav-
ior that have a significant correlation to the behavior of an account object. That is,
a client needs to be authorized before updating or reading the status of an order,
order details need to be written to a persistent storage, and so on.

If you examine business objects in similar applications you will see that even
though the actual structure and behavior of the object is tied closely to the busi-
ness problem it is going to solve, many services that these business objects
provide follow specific patterns that are quite generic in nature.

5.1.1 Common Requirements of Business Objects

This section describes common requirements of business objects.

CHAPTER 5 THE ENTERPRISE JAVABEANS TIER132

DEA2e.book Page 132 Friday, March 8, 2002 12:31 AM
5.1.1.1 Maintain State

A business object often needs to maintain state between method invocations. This
state can be either conversational or persistent. Conversational state is state main-
tained in an object during the conversation between a client and the application. Per-
sistent state is state that is stored in a database or other persistent store, outliving the
conversation between a client and the application.

Consider a shopping cart object. The state of the shopping cart object repre-
sents the items and quantities of the items purchased by the client. The cart is ini-
tially empty and gains meaningful state when a user adds an item to the cart.
When a user adds a second item to the cart, the cart should have both items in it.
Similarly, when a user deletes an item from the cart, the cart should reflect the
change in its state. When a user exits the application, the cart object is reclaimed
and the conversational state no longer exists. When the object gains, maintains,
and loses its state as a result of repeated interactions with the same client, we say
the object maintains conversational state.

To understand persistent state, consider an account object. When a user
creates an account, the account information needs to be stored permanently so that
when the user exits the application and re-enters the application, the account
information can be presented to the user again. The state of an account object
needs to be maintained in persistent storage, such as a database that will survive
system crashes.

5.1.1.2 Operate on Shared Data

Another common characteristic of business objects is that they often operate on
shared data. In this case, measures must be taken to provide concurrency control and
appropriate levels of isolation for access to the shared data. An example of such a
scenario would be multiple users updating the same account information. If two
users try to update the same account at the same time, a mechanism must be used to
keep the data in a consistent state.

5.1.1.3 Participate in Transactions

A transaction can be described as a set of tasks that need to be completed as a unit. If
one of the tasks fails, all the tasks in the unit will be rolled back. If all of them suc-
ceed, the transaction is said to be committed.

Business objects often need to participate in transactions. For example, order
placement needs to be transactional because of the set of tasks required to com-

BUSINESS LOGIC AND BUSINESS OBJECTS 133

DEA2e.book Page 133 Friday, March 8, 2002 12:31 AM
plete an order—decrementing the quantity of the purchased item in inventory,
storing the order details, and sending an order confirmation to the user. For the
transaction to be completed, all of these tasks must succeed. If any one of these
tasks fails, work done by other tasks needs to be undone.

In many business operations, transactions may span more than one remote
data source. Such transactions—called distributed transactions—require special
protocols to ensure data integrity. Chapter 8 discusses the issues involved in trans-
action management.

5.1.1.4 Service a Large Number of Clients

A business object should be able to provide its services to a large number of clients
at the same time. This translates into a requirement for instance management algo-
rithms that give each client an impression that a dedicated business object is avail-
able to service its request. Without such a management mechanism, the system will
eventually run out of resources and will not be able to service any more clients.

5.1.1.5 Remain Available to Clients

A business object should remain available to clients even when systems crash, a
service referred to as high availability. The EJB container in which a business object
resides provides this service by utilizing strategies to mask various server errors
from the clients.

5.1.1.6 Provide Remote Access to Data

A client should be able to remotely access services offered by a business object.
This means that the business object should have some type of infrastructure to
support servicing clients over the network. This in turn implies that a business object
should be part of a distributed computing environment that takes care of fundamen-
tal issues in distributed systems, such as location and failure transparency.

5.1.1.7 Control Access

The services offered by business objects often require some type of client authenti-
cation and authorization mechanism to allow only a certain set of clients to access
protected services. For example, it should be verified that a client is authorized to
update account information in an account business object before allowing it to do
so. In many enterprise scenarios, different levels of access control are needed. For

CHAPTER 5 THE ENTERPRISE JAVABEANS TIER134

DEA2e.book Page 134 Friday, March 8, 2002 12:31 AM
example, employees should only be allowed to view their own salary objects, while
a payroll administrator can view as well as modify all salary objects.

5.1.1.8 Reusable

A common requirement of business objects is that they be reusable by different
components of the same application and/or by different applications. For example,
an application used by the payroll department to keep track of employees’ salary
may have two business objects: employee and salary. A salary business object may
use the services of an employee business object to get the grade level of an
employee. An application that tracks the employee vacation allowances may want to
use this employee object to get the name of the employee through the employee
number. Business objects are able to be used by inter- and intra-application compo-
nents when they are developed in a standard way and run in an environment that
abides by these standards. If these standards are widely adopted by the vendor com-
munity, an application can be assembled from off-the-shelf components from differ-
ent vendors. In addition to enabling rapid application development, this approach
helps developers avoid vendor lock-in.

5.2 Enterprise Beans as J2EE Business Objects

As discussed in the previous section, business objects need to provide some generic
services to clients, such as support for transactions, security, and remote access.
These common services are complex in nature and are outside the domain of the
business logic required to implement an application. To simplify development,
enterprise applications need a standard server-side infrastructure that can provide
such services.

The EJB tier of the J2EE platform provides a standard server-side distributed
component model that greatly simplifies the task of writing business logic. In the
EJB architecture, system experts provide the framework for delivering system-
level services, and application domain experts provide the components that hold
business-specific knowledge. The J2EE platform enables enterprise developers to
concentrate on solving the problems of the enterprise instead of expending their
efforts on system-level issues.

ENTERPRISE BEANS AS J2EE BUSINESS OBJECTS 135

DEA2e.book Page 135 Friday, March 8, 2002 12:31 AM
The Enterprise JavaBeans architecture defines components—called enterprise
beans—that allow the developer to write business objects that use the services
provided by the J2EE platform. There are three kinds of enterprise beans: session
beans, entity beans, and message-driven beans.

• Session beans are intended to be private resources used only by the client that
creates them. For this reason, session beans, from the client’s perspective, ap-
pear anonymous.

• Entity beans are components that represent an object-oriented view of some
entities that are stored in persistent storage, such as a database. In contrast to
session beans, every entity bean has a unique identity that is exposed as a pri-
mary key.

• Message-driven beans are new to the EJB 2.0 architecture supported in the
J2EE 1.3 platform. Message-driven beans are components that process asyn-
chronous messages delivered via the Java Message Service (JMS) API.
Message-driven beans, by implementing a JMS message listener interface, can
asynchronously consume messages sent to a JMS queue or topic.

Later sections of this chapter discuss each type of enterprise bean in detail.
Enterprise beans live inside EJB containers, which provide life cycle manage-

ment, transactions, security, persistence, and a variety of other services for them.
An EJB container is part of an EJB server, which provides naming and directory
services, e-mail services, and so on. When a client invokes an operation on an
enterprise bean, the call is intercepted by its container. By interposing between
clients and components at the method call level, containers can inject services that
propagate across calls and components, and even across containers running on
different servers and different machines. Because the container adds these ser-

CHAPTER 5 THE ENTERPRISE JAVABEANS TIER136

DEA2e.book Page 136 Friday, March 8, 2002 12:31 AM
vices “behind the scenes,” this mechanism simplifies development of both compo-
nents and clients. Figure 5.1 illustrates this.

Figure 5.1 Client View of Enterprise Beans

5.2.1 Enterprise Beans and EJB Containers

The EJB architecture endows enterprise beans and EJB containers with a number of
unique features that enable portability, reusability, and ease of use:

• Enterprise bean instances are created and managed at runtime by a container.
If an enterprise bean uses only the services defined by the EJB specification,
the enterprise bean can be deployed in any compliant EJB container. Special-
ized containers can provide additional services beyond those defined by the
EJB specification. An enterprise bean that depends on such a service can be de-
ployed only in a container that supports that service.

ENTERPRISE BEANS AS J2EE BUSINESS OBJECTS 137

DEA2e.book Page 137 Friday, March 8, 2002 12:31 AM
• The behavior of an enterprise bean is not wholly contained in its implementa-
tion. Service information, including transaction information (described in
Chapter 8) and security information (described in Chapter 9), is separate from
the enterprise bean implementation. (For transactions, this separation is partic-
ularly true when the bean opts to delegate transaction management to the
container. However, beans that choose to do their own transaction manage-
ment include calls to the appropriate methods of the
javax.transaction.UserTransaction interface in their implementation
class.) When service information is kept separate from the bean implementa-
tion, the service information can be customized during application assembly
and deployment (described in Chapter 7). This makes it possible to include an
enterprise bean in an assembled application without requiring source code
changes or recompilation, even when it is redeployed in a different environ-
ment. Specifying service-level details in the deployment descriptor also great-
ly reduces the amount of code that a developer needs to write.

• The bean provider defines the client view of an enterprise bean. The client
view of an enterprise bean can be either a remote view or a local view. A pro-
vider can define both types of views for a bean, but usually only one or the oth-
er is provided. The client view of an enterprise bean—either remote or local—
is provided through two interfaces: a component interface and a home inter-
face. Although the client view is unaffected by the container and server in
which the bean is deployed, the client of a bean’s local client view must be co-
located in the same container as the bean. Because the client view is the same
regardless of the container or server in which the bean is deployed, it ensures
that both the beans and their clients can be deployed in multiple execution en-
vironments without changes or recompilation. The client view interfaces are
implemented by classes generated by the container when a bean is deployed. It
is by implementing these interfaces that the container can interpose on the cli-
ent operations on a bean and inject its services. See Section 5.3 on page 140.

The following sections describe the home and component interfaces and the
enterprise bean class. Note that only session and entity beans have client view
interfaces. Message-driven beans are not directly accessible by clients. Access to
message-driven beans is discussed in Section 5.6 on page 154.

CHAPTER 5 THE ENTERPRISE JAVABEANS TIER138

DEA2e.book Page 138 Friday, March 8, 2002 12:31 AM
5.2.1.1 Home Interface

The home interface provides methods for creating and removing enterprise beans. In
addition, the home interface of an entity bean also contains methods to find
instances of the bean based on certain search criteria, and it may contain home busi-
ness methods.

The home interface for an enterprise bean with a remote client view must
extend javax.ejb.EJBHome. The home interface for an enterprise bean with a local
client view extends javax.ejb.EJBLocalHome.

Generally, the enterprise bean’s remote home interface allows a client to do
the following:

• Create new enterprise bean instances

• Remove enterprise bean instances

• Get the metadata for the enterprise bean through the javax.ejb.EJBMetaData

interface. The javax.ejb.EJBMetaData interface is provided to allow applica-
tion assembly tools to discover the metadata information about the bean.

• Obtain a handle to the home interface. The home handle can be serialized and
written to stable storage. Later, possibly in a different Java virtual machine, the
handle can be deserialized from stable storage and used to obtain a reference
to the home interface.

• Find an existing entity bean instance. The home interface of an entity bean pro-
vides one or more methods for finding existing entity bean instances within the
home. Every entity bean home contains a findByPrimaryKey method. A client
that knows the primary key of an entity object can obtain a reference to the en-
tity object by invoking the findByPrimaryKey method on the entity bean’s
home interface. The bean provider may define other finder methods in the en-
tity bean’s home interface as well.

• Provide business logic across all bean instances. The home interface of an en-
tity bean may also define methods to provide business logic that is not specific
to an individual bean instance.

An enterprise bean’s local home interface is similar to the remote home inter-
face. It allows clients to create and remove enterprise bean instances, but it does
not provide methods for getting metadata or for obtaining a handle.

ENTERPRISE BEANS AS J2EE BUSINESS OBJECTS 139

DEA2e.book Page 139 Friday, March 8, 2002 12:31 AM
5.2.1.2 Component Interface

The component interface defines the set of business methods available to clients. An
enterprise bean may have a remote and/or a local client view. The bean developer
must define a component interface for each such client view that the bean provides.
Usually, a bean provides either a local or remote view, but not both.

The remote component interface must extend javax.ejb.EJBObject, while
the local component interface extends javax.ejb.EJBLocalObject. Implementa-
tions of these interfaces (which are generated by the container) delegate invoca-
tion of a business method to an instance of the enterprise bean class.

The javax.ejb.EJBObject and the javax.ejb.EJBLocalObject interfaces
define the methods that allow clients to perform the following operations on a ref-
erence to an enterprise bean object:

• Obtain the home interface

• Remove the enterprise bean object

• Test whether a given enterprise bean object is identical to another

• Obtain an entity bean object’s primary key

The javax.ejb.EJBObject interface for a bean with a remote client view
defines a method that allows its clients to obtain a handle to the enterprise bean
object. This method is not available to clients of a bean with a local client view.

5.2.1.3 Enterprise Bean Class

The enterprise bean class provides the actual implementation of the business
methods of the bean. A business method defined on the enterprise bean class is
called by the container when the client calls the corresponding method listed in the
component interface. In the case of a message-driven bean, the container invokes
the onMessage method defined on the message-driven bean class when a message
arrives for the bean to service. Depending on whether the bean is an entity bean, a
session bean, or a message-driven bean, the enterprise bean class must implement
the javax.ejb.EntityBean, the javax.ejb.SessionBean, or the
javax.ejb.MessageDrivenBean interface.

In addition to business methods, the home interface and the enterprise bean
class also share responsibility for create methods and for finder methods and
home methods (in the case of entity beans).

CHAPTER 5 THE ENTERPRISE JAVABEANS TIER140

DEA2e.book Page 140 Friday, March 8, 2002 12:31 AM
The create methods provide ways to customize a bean at the time it is created.
For each create... method listed in the home interface, the bean class imple-
ments a corresponding ejbCreate... method. A message-driven bean class must
also implement an ejbCreate method, even though it has no home interface.

Finder methods provide ways to locate a bean. For each finder method listed
in the home interface of an entity bean with bean-managed persistence, the bean
class implements the corresponding ejbFind... method. In the case of an entity
bean with container-managed persistence, the ejbFind... methods are defined as
query methods in the deployment descriptors, and their implementation is pro-
vided by the container.

Entity bean classes must also provide an implementation for each home
method listed in the home interface. These home methods are implemented with
corresponding ejbHome... methods.

An entity bean with container-managed persistence may also define select
methods in its bean class. A select method is a query method for the internal use
of the entity bean class and is not exposed in the home or component interface.
The bean provider defines the semantics of a select method by specifying an
Enterprise JavaBeans Query Language (EJB QL) query string in the deployment
descriptor. The container provides the implementation of the select method. Select
methods return values from the container-managed persistent and container-
managed relationship fields of entity beans with container-managed persistence.

The following three sections contain in-depth discussions of the properties
and uses of entity and session beans. Message-driven beans are covered in Section
5.6 on page 154.

5.3 Remote and Local Client Views

The EJB 2.0 specification introduces a local client view for session and entity beans,
in addition to preserving the remote client view defined by the EJB 1.1 specification.
As described in the previous sections, a session or entity bean can implement a local
home interface and local component interface instead of (or in addition to) a remote
home interface and remote component interface.

An enterprise bean defines a remote client view when it is designed for use in
a distributed environment; that is, when its clients may potentially reside in a dif-
ferent JVM. Each method call on a bean’s remote home or component interface
results in a remote method invocation. Although necessary for distributed sys-
tems, remote method invocations have a certain amount of network overhead and

REMOTE AND LOCAL CLIENT VIEWS 141

DEA2e.book Page 141 Friday, March 8, 2002 12:31 AM
can have performance limitations. In addition, the overhead of a remote invoca-
tion occurs even if the client and the bean are located on the same JVM. This can
be particularly problematic in situations that require fine-grained access to
objects. (See Section 5.7.3 on page 159 for a more complete discussion of how to
handle fine-grained access.) While these limitations are unavoidable for distrib-
uted systems, proper design can reduce their impact.

Use of a local client view avoids the performance overhead of remote method
invocation. To use a local client view, the enterprise bean and its client must be
guaranteed to be located on the same JVM. By implementing a local home inter-
face and local component interface, co-located enterprise beans can make direct,
local method calls on the methods of other beans and avoid the remote invocation
overhead. It is thus feasible to implement fine-grained access between beans using
local interfaces.

5.3.1 Guidelines for Using Local or Remote Client Views

In certain situations it is preferable to use a local client view (local home and com-
ponent interfaces) for an enterprise bean. In other situations, a remote client view
(remote home and component interfaces) is more appropriate. Keep in mind that
most of these considerations apply to session beans as well as entity beans,
because both can implement local and remote client views.

• Use remote interfaces when the distribution of components (or their potential
distribution) requires location independence in the deployment environment.

• Use remote interfaces when loose coupling between a bean and its client is de-
sirable.

• Use remote interfaces to ensure that parameters are passed between a bean and
a client using pass-by-value semantics rather than pass-by-reference seman-
tics. Passing parameters by value prevents the bean from inadvertently modi-
fying the client data, as the bean gets its own copy of the data separate from the
client’s copy. With local interfaces, which use pass-by-reference semantics, a
reference to the same copy of the data is passed between the client and the
bean. Both the client and the bean view and act on the same single copy of the
data. Any actions the bean performs on the data affects the client’s view of the
data.

• Use remote interfaces for entity beans that require only coarse-grained access
to the underlying data objects.

CHAPTER 5 THE ENTERPRISE JAVABEANS TIER142

DEA2e.book Page 142 Friday, March 8, 2002 12:31 AM
The use of local interfaces for enterprise beans may be better suited to some
applications. Consider using local interfaces for session and entity beans under
these circumstances:

• Use local interfaces for a session or entity bean if they are required to be locat-
ed in the same container as their clients. For local interfaces to be used, the ses-
sion or entity bean must be deployed in the same JVM as the client.

• Use local interfaces when tight coupling between a client and a bean is desir-
able.

• Use local interfaces when pass-by-reference semantics is preferable for param-
eter passing between a client and the bean. This is typically done to achieve
higher performance by avoiding the overhead of object copying.

• Use local interfaces for entity beans that expose fine-grained access to the un-
derlying data objects.

An entity bean that uses local interfaces is referred to as a lightweight entity
bean because it avoids the performance costs of remote interfaces.

5.3.2 Entity Beans and Local Client Views

An entity bean is generally used with a local view. If the application is such that a
remote view is necessary, the developer can use a session bean with a remote client
view as a facade to entity beans with local views. See Section 5.7.2 on page 158 for
more information.

Local interfaces offer other advantages for entity beans. Local interfaces
enable entity beans with container-managed persistence to participate in con-
tainer-managed relationships with other entity beans. With container-managed
relationships, the EJB container manages the persistent relationships between
entity beans, much like it manages the persistent state of entity beans. Container-
managed relationships are described further in Section 5.4.2.2 on page 146.

5.4 Entity Beans

An entity bean represents an object view of business data stored in persistent storage
or an existing application. The bean provides an object wrapper around the data to
simplify the task of accessing and manipulating it. This object view of data lends

ENTITY BEANS 143

DEA2e.book Page 143 Friday, March 8, 2002 12:31 AM
itself to software reuse. For example, an entity bean representing customer account
information can be used by order management, user personalization, and marketing
in a uniform way.

An entity bean allows shared access from multiple clients and lives beyond
the duration of the client’s session with the server. If the state of an entity bean is
being updated by a transaction at the time of a server crash, the entity bean’s state
is automatically reset to the state of the last committed transaction.

5.4.1 Guidelines for Using Entity Beans

A bean provider can use the following entity bean characteristics as guidelines when
deciding whether to model a business object as an entity bean:

• Representing persistent data

If the state of a business object needs to be stored in a persistent storage and its
behavior primarily represents or is dependent upon the manipulation of such
state, then it should be modeled as an entity bean.

• Representing objects with clearly-defined identity

Instances of business objects typically have their own unique identity. A busi-
ness object’s identity distinguishes one object instance from another and
makes it possible to locate a particular business object. For example, a business
object representing a purchase order has a purchase order number that uniquely
identifies that order. Entity beans provide a persistent identity for business ob-
jects. They should be used when accessing an object by its identity is important
to the application.

• Providing concurrent access by multiple clients

When multiple clients need to share the state and behavior of a business object,
that object should be modeled as an entity bean. An entity bean maintains per-
sistent state. However, this state is not specific to a particular client, but instead
it is representative of the persistent state of a business object. By modeling
business objects as entity beans, a bean provider can rely on an EJB server or
container to ensure appropriate synchronization for entity beans when they are
accessed concurrently from multiple transactions.

CHAPTER 5 THE ENTERPRISE JAVABEANS TIER144

DEA2e.book Page 144 Friday, March 8, 2002 12:31 AM
• Providing robust, long-lived persistent data management

When a business object exists independently of user sessions and its state must
survive container restarts, model it as an entity bean. Entity bean state survives
container restarts and crashes and does not depend on a particular user session.

• Persisting data in a portable manner

Use an entity bean to model persistent data that needs to be accessed in a por-
table way. Using entity beans with container-managed persistence guarantees
that the bean’s view of its own persistent state is always the same, regardless
of how it is stored in the data storage system used in its deployment environ-
ment.

• Providing access through queries

Unlike session beans and message-driven beans, entity beans with container-
managed persistence provide a query capability and can be located by the con-
tainer based on their identity or state. The bean provider can define queries that
allow entities to be automatically found by the container on the basis of the val-
ues of their persistent data—such as customer location, order quantity, order
identification number, and so on.

• Simplifying transaction handling

Use an entity bean to have the container handle the transaction logic for the
persistent data. By doing so, the developer does not have to include transaction
handling code with the entity bean’s business logic.

5.4.2 Entity Bean Persistence

The protocol for transferring the state of an entity between the enterprise bean
instance and the underlying persistent store is referred to as object persistence. An
entity bean can implement persistence in the following ways:

• Directly implementing persistence in the enterprise bean class or in one or
more helper objects provided with the enterprise bean class (bean-managed
persistence)

• Delegating the handling of its persistence to its container (container-managed
persistence)

ENTITY BEANS 145

DEA2e.book Page 145 Friday, March 8, 2002 12:31 AM
With bean-managed persistence, the bean provider writes database access
calls. These calls can be coded directly into the enterprise bean class or encapsu-
lated in a data access object that is part of the entity bean. If data access calls are
coded directly in the enterprise bean class, it may be more difficult to adapt the
entity component to work with a database that has a different schema or with a
different type of database. Encapsulating these calls in a data access object makes
it easier to adapt the enterprise bean’s data access to different schemas or different
database types, but requires regeneration of the data access objects used by the
bean. The data access object approach should therefore only be used when use of
container-managed persistence is not appropriate for the individual bean type.
Data access objects are discussed in Section 5.7.5 on page 161.

With container-managed persistence, the bean provider relies on the container
to manage the access to the persistent state of the bean. Unlike the case of bean-
managed persistence, the bean provider does not have to write any database access
calls.

The EJB 2.0 architecture significantly improves upon container-managed per-
sistence. Rather than defining instance variables in the entity bean class for the
bean state that is to be stored to the database, as with earlier EJB specifications,
the bean provider defines public abstract accessor methods (get and set methods)
for each container-managed persistent and container-managed relationship “field.”
The container provides the implementation of the get and set methods used at
runtime. The “field” itself is invisible to the bean.

Container-managed persistence simplifies the task of writing entity beans,
because the container takes the responsibility of generating the code to access the
data source. Bean developers should take advantage of this feature and use con-
tainer-managed persistence whenever possible to delegate to the container the task
of maintaining the persistence state of an entity bean.

5.4.2.1 Example: A Customer Account Bean

The concept of a customer account is central to all clients in many e-commerce
applications. Multiple clients need to share behavior such as creating an account,
verifying an existing account, and updating account information. Updates to the
state of an account object need to be written to persistent storage. The account
object needs to live even when the client’s session with the server is over. Therefore,
in the sample application, an account object is modeled as an entity bean.

An Account bean conforming to the EJB 2.0 specification that uses container-
managed persistence does not declare instance variables for its container-managed

CHAPTER 5 THE ENTERPRISE JAVABEANS TIER146

DEA2e.book Page 146 Friday, March 8, 2002 12:31 AM
persistent fields. Instead, it uses accessor methods for the data fields, as shown in
Code Example 5.1.

public abstract class AccountEJB implements EntityBean {

// Container-managed persistent fields

public abstract String getStatus();

public abstract void setStatus(String status);

...

}

Code Example 5.1 Account Bean Implementation

5.4.2.2 Container-Managed Relationships

The EJB container provides automatic management of both the persistent state of
entity beans and the persistent relationships among entity beans. Container-
managed relationships may be unidirectional or bidirectional, and they may be of
any cardinality. That is, a relationship may be a one-to-one relationship, a one-to-
many relationship, or a many-to-many bidirectional relationship. Keep in mind
that relationship integrity is maintained based on the direction of the relationship.

Relationships are implemented as container-managed relationships fields.
Like persistent fields, container-managed relationships fields are abstract bean
fields that are defined and accessed by public abstract get and set accessor
methods in the enterprise bean class. The type of a container-managed relation-
ship field is either an entity bean local component interface type or a collection of
an entity bean local component interface type.

Entity bean relationships are manipulated by simply using the get and set
accessor methods and the methods of the java.util.Collection API. Any
change made to a container-managed relationship field is reflected in the relation-
ship between the entity beans involved in the relationship and is automatically
persisted by the container. The container also automatically enforces the integrity
constraints of each relationship. For example, if the entity bean Supplier has a
many-to-many bidirectional relationship with the entity bean Item, then if a sup-
plier S stops supplying an item I, the container will automatically remove supplier
S from the set of suppliers available to supply item I.

An entity bean must provide a local client view so that it can be used as the
target of a container-managed relationship. It is important to note, however, that

ENTITY BEANS 147

DEA2e.book Page 147 Friday, March 8, 2002 12:31 AM
an entity bean is not required to have a local client view to make use of container-
managed persistence.

The entity bean’s deployment descriptor contains a description of the bean’s
abstract persistence schema. This schema is an abstract representation of an entity
bean’s persistent state and relationships, independent of the bean’s implementa-
tion in a particular container or particular data store.

5.4.2.3 EJB QL, the EJB Query Language

A further advantage of using entity beans with container-managed persistence is that
they support the use of EJB QL, the Enterprise JavaBeans Query Language. EJB QL
is a query language similar to SQL that is new to EJB 2.0. By allowing the bean pro-
vider to specify queries defined on an entity bean’s abstract persistence schema, EJB
QL provides a datastore-independent, portable way to express how to find an entity
object or collection of entity objects. EJB QL queries can also find container-
managed persistent field values.

The container maps a query in EJB QL to operations on the underlying persis-
tent data store. For example, in the case of a relational data store, the container
maps an EJB QL query to an SQL query.

For each EJB QL finder or select method (except findByPrimaryKey), there
must be a corresponding EJB QL query that defines its behavior. The container
implements the finder or select method by translating the EJB QL statement into a
query on the persistent store, such as a query on a relational database.

An EJB QL query always has a SELECT clause and a FROM clause, and may
also have a WHERE clause that limits the query result set. The result of an EJB
QL query may be either an entity bean or a persistent value, or collections of
these.

For example, the Code Example 5.2 demonstrates how the sample application
uses an EJB QL query for a finder method findOrdersByStatus to find orders that
are in a particular status, such as PENDING.

SELECT DISTINCT OBJECT(o)

FROM SupplierOrder o

WHERE o.poStatus = ?1

Code Example 5.2 EJB QL Query Example

CHAPTER 5 THE ENTERPRISE JAVABEANS TIER148

DEA2e.book Page 148 Friday, March 8, 2002 12:31 AM
The query returns SupplierOrder objects, as indicated by the expression
OBJECT(o). The identifier o is analogous to an SQL correlation variable. The
WHERE clause limits the orders to those whose status matches the value of the
first parameter passed to the query (denoted by the expression ?1).

Here are some guidelines for writing queries in EJB QL:

• Utilize parameters and write general queries that serve multiple purposes. For
example, Code Example 5.2 uses the expression ?1 rather than PENDING to im-
plement a general query that can be used to find orders in any status, not just
PENDING.

• Use distinct to eliminate duplicates in a returned collection of objects. For
example, Code Example 5.2 uses distinct to eliminate duplicate orders from
the result of the query.

• Write select methods for complex queries that you do not want exposed to cli-
ents. For example, to avoid exposing an employee’s salary to clients, an em-
ployee bean may use a select method to programmatically calculate an
employee’s bonus based on salary.

• Write complex select queries to select results on a tightly-coupled network of
entity beans that can return data about the network, entity object, or container-
managed persistent field data.

5.4.2.4 Benefits of EJB 2.0 Container-Managed Persistence

The EJB 2.0 approach to container-managed persistence offers a number of benefits:

• Provides a layer of data independence

Container-managed persistence provides for data independence in two loca-
tions: between the client view and the entity bean and between the entity bean
and the persistent store.

• Promotes an entity bean’s portability

With the EJB 2.0 container-managed persistence approach, it is easier to mi-
grate an entity bean to different EJB containers and to different types of per-
sistent stores. This migration can be done without recompiling the bean.

ENTITY BEANS 149

DEA2e.book Page 149 Friday, March 8, 2002 12:31 AM
• Provides a datastore-independent query language

EJB QL provides a way to specify queries for the finder and select methods of
entity beans with container-managed persistence that is independent of their
implementation in a particular database or other persistent store. It therefore
allows such entity beans to be portable across particular storage systems.

• Provides for faster development

Because the bean provider does not have to be concerned with the details of
persistence management, development of the entity bean can be faster and sim-
pler and the developer is further freed from systems-level concerns.

5.4.3 When to Use Bean-Managed Persistence

Despite the many advantages of container-managed persistence, there are situations
in which it is more appropriate to develop entity beans using the bean-managed per-
sistence approach. These include the following:

• Use bean-managed persistence when you need exact control over the database
schema or need to customize code to match a specific legacy database schema.

• Use bean-managed persistence when it is important that the application be very
finely tuned against the database that is in use.

• Use bean-managed persistence when portability is not an issue. Even in this
case, however, it is recommended that data access objects (DAOs) be used.
DAOs better enable the bean to be adapted to a different database schema or to
evolve into an entity bean with container-managed persistence at a later date.
See Section 5.7.5 on page 161.

• Use bean-managed persistence when the query needs of the application exceed
the current capabilities of EJB QL. While EJB QL will continue to develop, it
is not yet able to express a number of queries that are expressible in SQL.

• Use bean-managed persistence when your persistent store is not a database
system or is a legacy database system that is not likely to be supported for con-
tainer-managed persistence.

CHAPTER 5 THE ENTERPRISE JAVABEANS TIER150

DEA2e.book Page 150 Friday, March 8, 2002 12:31 AM
5.5 Session Beans

Session beans are used to implement business objects that hold client-specific busi-
ness logic. The state of such a business object reflects its interaction with a particular
client and is not intended for general access. Therefore, a session bean typically exe-
cutes on behalf of a single client and cannot be shared among multiple clients. A
session bean is a logical extension of the client program that runs on the server and
contains information specific to the client. In contrast to entity beans, session beans
do not directly represent shared data in the database, although they can access and
update such data. The state of a session object is non-persistent and need not be
written to the database.

A session bean is intended to be stateful. However, the Enterprise JavaBeans
specification allows stateless session beans as a way to provide server-side behav-
ior that doesn’t maintain any specific state. The next sections discuss the proper-
ties and uses of both stateful and stateless session beans.

5.5.1 Stateful Session Beans

A stateful session bean contains conversational state on behalf of its client. The con-
versational state is defined as the session bean’s field values plus all objects reach-
able from the session bean’s fields. Stateful session beans do not directly represent
data in a persistent data store, but they can access and update data on behalf of the
client. As its name suggests, the lifetime of a stateful session bean is typically that of
its client.

5.5.1.1 Uses of Stateful Session Beans

A bean provider can use the following session bean characteristics as guidelines
when deciding whether to model a business object as a stateful session bean:

• Maintaining client-specific state

Stateful session beans are designed to maintain a conversational state on behalf
of a client; therefore, business objects representing client-centric business log-
ic should be modeled as stateful session beans. Since stateful session bean in-
stances are tied to a client, system resources held by stateful session beans
usually cannot be shared among multiple clients.

SESSION BEANS 151

DEA2e.book Page 151 Friday, March 8, 2002 12:31 AM
• Representing non-persistent objects

Stateful session bean state is not stored in persistent storage and cannot be rec-
reated after the client’s session with the server ends. Therefore, business ob-
jects that are relatively short-lived and non-persistent—whose state must only
be maintained for one entire session—should be modeled as stateful session
beans. If a stateful session bean needs to save persistent state beyond its own
lifetime, it should make use of one or more entity beans for this purpose.

5.5.1.2 Example: A Shopping Cart Bean

A shopping cart object represents the collection of products selected by a particular
customer for purchase during a session. The contents of the shopping cart are spe-
cific to a particular customer session and need not be saved unless the customer is
ready to place an order. The shopping cart object is short-lived. The data should not
be shared, since it represents a particular interaction with a particular customer and
is alive only for the customer’s session with the server. The sample application
models the concept of shopping cart as a local stateful session bean. As shown in
Code Example 5.3, ShoppingCartLocal provides ability to add and delete items to
the shopping cart.

public interface ShoppingCartLocal extends EJBLocalObject {

public void addItem (String itemID);

public Collection getItems (Locale locale);

public void deleteItem (String itemID);

public void updateItemQuantity (String itemID, int newQty);

public void empty ();

}

Code Example 5.3 ShoppingCartLocal Interface

5.5.2 Stateless Session Beans

Stateless session beans are designed strictly to provide server-side behavior. The
term stateless means that the session bean does not maintain any state information
for a specific client. This means that all stateless session bean instances are equiva-
lent when they are not involved in serving a client-invoked method. However, state-
less session beans can have non-client specific state, for example, an open network
or database connection.

CHAPTER 5 THE ENTERPRISE JAVABEANS TIER152

DEA2e.book Page 152 Friday, March 8, 2002 12:31 AM
5.5.2.1 Uses of Stateless Session Beans

A bean provider can use the following session bean characteristics as guidelines
when deciding whether to model a business object as a stateless session bean:

• Modeling reusable service objects

A business object that provides some generic service to all its clients can be
modeled as stateless session beans. Such an object does not need to maintain
any client specific state information across method invocations, so the same
bean instance can be reused to service other clients. For example, in the sample
application, the SignOn bean validates a customer id against a database as a
stateless service.

• Providing high performance

A stateless session bean can be very efficient as it requires fewer system re-
sources by the virtue of being not tied to one client. Since stateless session
beans minimize the resources needed to support a large number of clients, de-
pending on the implementation of the EJB server, applications that use this ap-
proach may scale better than those using stateful session beans. However, this
benefit may be offset by the increased complexity of the client application that
uses the stateless session beans because the client may have to perform the
state management functions.

• Providing procedural view of data

In a procedural view of data, methods of the business object do not operate on
instance variables. Instead, they behave like calls in a procedural language. If
a business object exhibits such functionality then it should be modeled as a
stateless session bean. For example, a stateless session bean can provide facade
methods that hide the operations of multiple entity beans behind it.

5.5.2.2 Example: A Catalog Bean

The sample application uses a stateless session bean to model a catalog object. A
catalog object represents different categories and products and provides browsing
and searching services to its clients. Both of the primary functions of the catalog,
browsing and searching, are generic services that are not tied to any particular client.
Also, the catalog object operates on multiple rows in the database at the same time
and provides a shared view of the data. Code Example 5.4 lists the services provided
by the catalog object:

MESSAGE-DRIVEN BEANS 153

DEA2e.book Page 153 Friday, March 8, 2002 12:31 AM
public interface CatalogLocal extends EJBLocalObject {

public Page searchItems(String keywords, int start, int count,

Locale l);

public Category getProduct(String productID, Locale l);

public Page getProducts(String categoryID, int start, int count,

Locale l);

...

}

Code Example 5.4 Catalog Component Interface

5.6 Message-Driven Beans

A message-driven bean is a new type of enterprise bean introduced in EJB 2.0. A
message-driven bean allows J2EE applications to receive JMS messages asynchro-
nously. (Asynchronous messaging allows applications or components to communi-
cate with other applications or components by exchanging messages in such a way
that senders are independent of receivers. The sender sends its message and does not
need to wait for the receiver to receive or process the message.)

Message-driven beans are components that receive inbound messages from a
JMS provider. The primary responsibility of a message-driven bean is to process
messages, because the bean’s container automatically manages other aspects of
the message-driven bean’s environment. Message-driven beans contain business
logic for handling received messages. A message-driven bean’s business logic
may key off the contents of the received message, or it may be driven by the mere
fact of receiving the message. Its business logic may include such operations as:

• Doing some computation

• Initiating a step in a workflow

• Storing data

• Sending another message

Message-driven beans function as message listeners, consuming messages
from a JMS destination (queue or a topic). While message-driven beans are cur-
rently limited to JMS messages, it is expected that their capabilities will be

CHAPTER 5 THE ENTERPRISE JAVABEANS TIER154

DEA2e.book Page 154 Friday, March 8, 2002 12:31 AM
expanded in future EJB specifications to allow other messaging systems to be sup-
ported as well.

From a bean developer’s standpoint, message-driven beans are much like
stateless session beans, only simpler. They have the same life cycle as stateless
session beans, but they do not have a component or home interface. The developer
needs to be concerned with implementing only one business method for a
message-driven bean, the onMessage method. The onMessage method contains the
business logic that the message-driven bean executes upon receipt of a message.
The bean typically examines the message and executes the actions necessary to
process it. This may in turn involve the invocation of other components. Like
session beans, message-driven beans may be used to drive workflow processes. In
this case, however, it is the arrival of a particular message that causes the process-
ing to be initiated.

A bean developer can choose to make the message-driven bean invocation
part of a transaction. This can be done only when using container-managed trans-
action demarcation. When a message-driven bean is part of a transaction, then the
message delivery is part of the subsequent transactional work. If the subsequent
transaction fails, then the message delivery is rolled back along with the other
transactional work. The message remains available in the JMS destination until
picked up by another message-driven bean instance. Note that the message sender
and message receiver, which is the message-driven bean, do not share the same
transaction. Thus, the sender and receiver communicate in a loosely coupled but
reliable manner.

Bean-managed transaction demarcation can also be used with a message-
driven bean, but because the transaction is started within the onMessage method,
the message delivery itself is not part of the transaction.

5.6.1 Uses of Message-Driven Beans

Consider using message-driven beans under the following circumstances:

• When you need to have asynchronous messaging in your application

• When you want to have messages automatically delivered. Automatic message
delivery avoids polling for messages.

• When you want to integrate two applications in a loosely-coupled but reliable
manner. Because JMS interfaces are available for most leading message-
oriented middleware products, message-driven beans are widely used to inte-

MESSAGE-DRIVEN BEANS 155

DEA2e.book Page 155 Friday, March 8, 2002 12:31 AM
grate enterprise beans with packages and legacy applications. Chapter 6 dis-
cusses this approach further.

• When you want the message delivery to drive other events in the system. For
example, workflow steps can be based on the mere fact of message delivery,
or they can be based on the message content.

• When you want to create message selectors. A message selector is designed to
take on only specific messages, thus making it possible to use message-driven
beans as triggers.

5.6.2 Example: Invoice Message-Driven Bean

Code Example 5.5 shows a message-driven bean that updates purchase orders based
on invoice information received in a JMS message. The message-driven bean listens
for JMS messages containing invoice data. When it receives a message, its
onMessage method extracts the invoice data from the message text. In this example,
the data has been encoded in XML, which is parsed and then used to process an
invoice.

public class InvoiceMDB implements

MessageDrivenBean, MessageListener {

public void onMessage(Message msg) {

try {

String msgTxt = ((TextMessage) msg).getText();

Invoice invoice = Invoice.fromXML(msgText);

// do further processing

} catch (...) {

// handle exceptions

}

}

}

Code Example 5.5 Message-Driven Bean Example

CHAPTER 5 THE ENTERPRISE JAVABEANS TIER156

DEA2e.book Page 156 Friday, March 8, 2002 12:31 AM
5.7 Design Guidelines

While you are free to write your application and enterprise bean code according to
your own needs, we do recommend certain guidelines.

• Keep the code in enterprise beans as “client-neutral” as possible. Enterprise
beans are meant to contain business logic that can be used by many client
types. Methods in enterprise beans that serve only one client type make any logic
within that method inaccessible to other client types. Code that is specific for a
particular client type belongs with the software managing that client type. In
particular, Web-tier and HTTP-related functions and data do not belong in an
enterprise bean.

• Keep as much business logic as possible in the EJB tier. By doing so, you take
advantage of the EJB container services and simplify your programming ef-
fort.

• Use stateful session beans to manage conversational state rather than manag-
ing conversational state in the client or Web tier. As with the previous point,
this leverages the advantages of enterprise beans.

In addition to the guidelines discussed previously for choosing specific bean
types, there are other design choices that you need to make when developing
objects for the EJB tier. These choices include the types of objects that should be
enterprise beans, and the role an enterprise bean may play in a group of collabo-
rating components.

You may also need to consider the services provided by enterprise beans and
the EJB container, and decide whether these services benefit your application. You
should take into consideration these EJB services and advantages:

• The EJB architecture handles such system services as transaction manage-
ment, security, scalability, persistent data access, distributed processing, and
concurrency. An enterprise bean developer does not have to include code to
handle these services. As a developer, you can focus on the application and
business logic.

• Enterprise beans support multiple types of components.

• Enterprise beans support applications with a complex series of operations and
accumulation of conversation state over time.

DESIGN GUIDELINES 157

DEA2e.book Page 157 Friday, March 8, 2002 12:31 AM
• Enterprise beans are portable across hardware platforms, operating systems,
server implementations, and databases .

• Enterprise beans can be easily customized in the runtime environment.

• Enterprise beans are reusable software modules.

5.7.1 Remote versus Local Client Access for Entity Beans

As noted earlier, an entity bean must implement a local client view to be the target
of a container-managed relationship. However, the requirements of the application
might necessitate that the same entity bean implement a remote view as well. It is
possible for an entity bean to use a local view and have the advantages of container-
managed relationships, and to expose its functionality to remote clients. This can be
done in the following two ways.

A bean provider can implement a session bean with a remote client view that
serves as a facade to the local entity beans implementing the container-managed
relationships. Clients use the methods of the remote session bean, which in turn
provides a conduit to the functionality of the local entity bean or beans. Because
the session bean implements a remote view, clients are not restricted to the same
Java Virtual Machine as the session bean. The functionality of the local entity
beans is available to remote clients through this session bean.

Alternatively, the bean provider can implement an entity bean with both a
local and remote client view. This dual-purpose entity bean may have one or more
entity beans with local interfaces behind it. The remote entity bean interface pro-
vides a coarse-grained view of the persistent data that is modeled by the network
of entity beans related through their local interfaces. The remote entity bean may
be accessed directly by clients of the EJB tier, or the bean provider may imple-
ment a remote session bean that serves as a facade to the entity bean with both the
local and remote view. Note that if the same method is exposed through both local
and remote interfaces, the method will be called with the pass-by-reference
semantics in the local case, and with the pass-by-value semantics in the remote
case. The bean provider needs to take care while writing and invoking the method
to avoid any unintended side-effects.

5.7.2 Session Beans as a Facade to Entity Beans

A facade provides a unified interface to a set of interfaces. This section describes
when and how to use a session bean as a facade to entity beans.

CHAPTER 5 THE ENTERPRISE JAVABEANS TIER158

DEA2e.book Page 158 Friday, March 8, 2002 12:31 AM
Entity beans represent an object-oriented view of data and provide business
logic to manipulate this data. In an enterprise environment, entity beans often
need to be shared among different applications representing different tasks. In
such cases, use of application-specific stateful session beans to manage the inter-
action of various entity beans provides a simpler interface to the client by giving
the client a central point of entry. The client always interacts with this session
bean and is unaware of the existence of other entity beans in the system. However,
if the client interacts with only a few entity beans in a relatively simple way, the
entity beans can be exposed directly.

Stateful session beans are logical extensions of the client programs. The deci-
sion to use one or many session bean facades depends on the types of clients the
application supports. Since the sample application has only a single type of client,
the shopping client, the sample application uses a single stateful session bean
called ShoppingClientFacadeLocal. It’s easy to imagine another client that would
provide administration functionality such as inventory and order status monitor-
ing. The work flow of such a client would be entirely different from a shopping
client. Therefore, it is advisable to define another stateful session bean that encap-
sulates this administrative work flow. However, it is not recommended that a
session bean be created as a facade for every entity bean in the system, as that
approach would waste server resources.

5.7.3 Fine-Grained versus Coarse-Grained Object Access

Entity beans with local interfaces provide efficient access to fine-grained objects.
Model these objects as local entity beans when you can assure that their clients are
co-located on the same JVM, or implement the business objects with a local view
and provide a remote enterprise bean facade to them.

As mentioned earlier, enterprise beans that are implemented as remote objects
may consume significantly more system resources and network bandwidth to exe-
cute. Because of the overhead of remote access, remote entity beans should not be
used for fine-grained access. Therefore, only model a business object as a remote
entity bean if its clients are distributed. In such a case, keep the entity bean access
coarse grained, and use a value object to pass data across the remote interface.

A value object is a serializable Java object that can be passed by value to the
client. A value object can be used to aggregate state extracted from a remote entity
bean for use by the client. By avoiding the use of fine-grained remote method calls
to retrieve the persistent state of an entity bean, value objects help reduce the
network overhead involved in remote access.

DESIGN GUIDELINES 159

DEA2e.book Page 159 Friday, March 8, 2002 12:31 AM
The sample application models the details of an order as a value object repre-
senting the state of a particular order in the database and providing getter methods
to query the state of this account. An administration client makes just one remote
call to execute getOrdersByStatus on the remote object account and gets back a
collection of the serialized OrderDetails objects. The client can then query the
state of these orders locally via the methods provided with the OrderDetails

object.

5.7.3.1 Example: An Address Value Object

In the sample application, an address and credit card information are modeled as
value objects. The definition of the Address class is shown in Code Example 5.6.

public class Address implements java.io.Serializable {

public Address (String streetName1, String streetName2,

String city, String state, String zipCode, String country){

this.streetName1 = streetName1;

this.streetName2 = streetName2;

...

}

public String getStreetName1() {

return streetName1;

}

...

private String streetName1;

private String streetName2;

...

}

Code Example 5.6 Address value object

An Address does not exhibit complex behavior, but is merely a data structure
that contains only data fields. An address is fine-grained, having only get and set
methods. Moreover, it only has meaning if it is associated with an account.

When making the object pass-by-value it is important to make it immutable to
reinforce the idea that the value object is not a remote object and changes to its
state will not be reflected on the server; in other words, it is just a copy and not the
remote reference. To make an Address object immutable, declare all its instance
data private and supply only get methods. To change a pass-by-value object, the

CHAPTER 5 THE ENTERPRISE JAVABEANS TIER160

DEA2e.book Page 160 Friday, March 8, 2002 12:31 AM
client must first remove it and then create a new object with the desired field
values.

5.7.4 Master-Detail Modeling Using Enterprise Beans

In a master-detail relationship, one object serves as a pointer to another. Typically
such a relationship is represented to the user as a list of items from which to select.
This list is called a master record and its contents are provided by the master object.
Selecting an item from this list leads to an expanded view of that item. The
expanded view is provided by a detail object.

A master-detail relationship is a one-to-many type relationship among data
sets. A set of purchase orders and a set of line items belonging to each purchase
order is an example of a master-detail relationship. An application can use this
master-detail relationship to enable users to navigate through the purchase order
data and see the detail data for line items only when needed.

Entity beans with container-managed persistence are the preferred way to
implement master-detail relationship modelling, since they support container-
managed relationships. Further, container-managed relationships provide a
cascade-delete facility that automatically enables the lifetime of the detail object
to be dependent on the lifetime of the master, capturing an important aspect of this
dependency.

5.7.5 Data Access Objects

In situations where the use of container-managed persistence is not suitable, data
access objects can be used to encapsulate access to persistent data. A data access
object (DAO) design pattern separates the interfaces to a system resource from the
underlying strategy used to access that resource. Both entity beans with bean-
managed persistence and session beans can use DAOs.

A DAO class provides an abstract API for manipulating a data source. This
abstract API makes no reference to how the data source is implemented. The DAO
simply has to know how to load itself from persistent store based on some identity
information (a primary key or a file name, for example), how to store itself, and
so on.

By encapsulating data access calls, data access objects allow adapting data
access to different schemas or even to different database types. Data access
objects for different schemas and databases can share a common interface
enabling the application assembler to choose the appropriate object from among

DESIGN GUIDELINES 161

DEA2e.book Page 161 Friday, March 8, 2002 12:31 AM
several at assembly time. Section 6.4.3 on page 188 extends this approach to show
how access objects can be used to create an integration layer.

The DAO pattern is not limited to representing data in a database. It can also
encapsulate XML data sources as DAO classes.

5.7.5.1 Clarifying Bean Implementations

When a session bean or an entity bean with bean-managed persistence needs to
access a database within a method implementation, a corresponding method in the
data access object implements the actual logic of fetching or updating data in the
database. This removes the data access logic from the enterprise bean implementa-
tion. The bean’s business logic is not cluttered with data access calls, such as JDBC
calls, making it much cleaner and readable.

For example, consider the Catalog session bean. The business method
getProducts needs to return all the products for a category. Whenever
getProducts needs to operate on data residing in the database, it hands over
control to a data access object. The data access object formulates the query,
fetches the result set, and returns the data in the desired format to the bean’s
calling method.

In the sample application, the implementation of the Catalog session bean is
provided by CatalogEJB. The code for CatalogEJB.getProducts appears in Code
Example 5.7; the code for the corresponding data access object appears in Code
Example 5.8.

public Page getProducts(String categoryId, int start, int count,

Locale l) {

try {

... // initialize dao to an instance of CatalogDAOImpl

return dao.getProducts(categoryId, start, count, l);

} catch (.....) {

// catch exceptions and throw an EJBException

}

}

Code Example 5.7 CatalogEJB.getProducts

public Page getProducts(String categoryId, int start, int count, Lo-

cale l) {

... // initialize database connection and other variables

CHAPTER 5 THE ENTERPRISE JAVABEANS TIER162

DEA2e.book Page 162 Friday, March 8, 2002 12:31 AM
String query = "select COUNT(*) from (product a join"

+ "product_details b on a.productid=b.productid) "

+ "where locale = ? and a.catid = ? ";

PreparedStatement ps = con.prepareStatement(query,

ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_READ_ONLY);

ps.setString(1, l.toString());

ps.setString(2, categoryID);

ResultSet rs = ps.executeQuery();

... // Create page from the result set and return it

}

Code Example 5.8 CatalogDAOImpl.getProducts

5.7.5.2 Consequences of Using DAO Pattern

Potential consequences of using the data access object pattern include:

• Resource vendor independence

When a component uses a vendor-specific API, it is locked into that vendor’s
product line. The DAO pattern provides a layer of indirection that isolates ven-
dor-specific code in a class or several classes, where it can easily be replaced
if necessary or desirable.

• Resource implementation independence

DESIGN GUIDELINES 163

DEA2e.book Page 163 Friday, March 8, 2002 12:31 AM
• Similar types of resources are often available in various formats through vari-
ous access methods. For example, persistent data can be implemented by a re-
lational database, an object database, flat files in a file system, interaction with
a remote persistence server, and so on. The DAO pattern separates the manage-
ment of data access mechanism details from the behavior of application ob-
jects. Easier migration to container-managed persistence

A data access object, by encapsulating persistence logic and separating it from
business logic, facilitates migrating from bean-managed persistence to con-
tainer-managed persistence.

• Enhanced extensibility

It is easier to add new data source types using data access objects. Each such
type requires only a new DAO class, plus integration of that class into the ex-
isting framework.

5.7.6 Implementing an Entity Bean without a Create Method

There are times when you do not want to provide create methods in an entity bean’s
home interface. Omit the create methods when you do not want the entity bean to
create persistent data. Typically in these situations, some other system or process is
responsible for creating the data underlying the entity bean’s persistent representa-
tion. For example, database functions insert new data into a database, and clients use
the entity bean to retrieve data.

5.7.7 Representing References to Entity Beans

References between enterprise beans are common in many applications. Entity
beans reference other related beans, stateful session beans may keep references to
entity beans in conversational state, and stateless session beans and message-driven
beans may look up and pass references to other beans. Developers can represent ref-
erences between entity beans in the following ways:

• Use a container-managed relationship

With the EJB 2.0 architecture, model persistent references between entity
beans using container-managed persistence as container-managed relation-

CHAPTER 5 THE ENTERPRISE JAVABEANS TIER164

DEA2e.book Page 164 Friday, March 8, 2002 12:31 AM
ships. Container-managed relationships automatically maintain persistent ref-
erences between entity beans and collections of entity beans.

• Store a reference to a home or component interface in a non-persistent field of
an entity bean with bean-managed persistence or in an instance variable of a
session or message-driven bean. Beans can retain references to other entity
beans in instance fields.

• Use the referenced entity bean’s primary key

If a referenced entity bean’s home interface is known, the referencing bean can
use the findByPrimaryKey method in the referenced bean’s home interface to
find a bean’s component interface.

• Do not pass this as a reference to an enterprise bean. Doing so circumvents
the EJB container and causes errors.

5.8 Portability Guidelines

The best way to achieve application portability is to use only J2EE-compatible
application servers and tools. These products pass the rigorous J2EE Compatibility
Test Suite (CTS) that ensures “Write-Once-Run-Anywhere” portability for J2EE
applications.

Another way to ensure portability is to use more than one application server in
the development cycle. The J2EE Reference Implementation (J2EE RI) is a good
choice for a second application server.

It is also helpful to use code generation wizards to write enterprise beans.
Besides enhancing productivity, such wizards typically generate code that is con-
sistent with the J2EE specifications, thereby eliminating inadvertent errors. For
example, such wizards will typically ensure that your enterprise bean methods
throw all required exceptions—RemoteException, FinderException, and so on.
These tools are particularly useful for generating the deployment descriptor since
the deployment descriptor content must follow a precise XML syntax. Writing
them manually is prone to errors because it is easy to incorrectly order elements,
duplicate element entries, or make simple typing mistakes.

Most application servers also ship with verification tools that validate the
components and their deployment descriptors against the J2EE specifications. The

PORTABILITY GUIDELINES 165

DEA2e.book Page 165 Friday, March 8, 2002 12:31 AM
J2EE RI also ships with one such tool called the J2EE Verifier. Run these verifica-
tion tools as part of your regular build process to enhance portability.

5.8.1 Typecast Remote References

A client program that needs to access a remote enterprise bean must use the
PortableRemoteObject.narrow method for type narrowing. Type narrowing is
needed when a client program looks up a home interface from JNDI, or a finder
method returns a collection of references to remote enterprise beans. Code Example
5.9 shows how to do type narrowing when looking up a home object from JNDI.

try {

Context ctxt = new InitialContext();

Object objref = ctxt.lookup("java:comp/env/ejb/remote/admin");

OrderProcessingCenterAdminFacadeHome adminHome =

(OrderProcessingCenterAdminFacadeHome) PortableRemoteOb-

ject.narrow (objref, OrderProcessingCenterAdminFacadeHome.class);

OrderProcessingCenterAdminFacade admin = adminHome.create();

} catch (....) {

Code Example 5.9 Using the narrow Method for Type Narrowing

Type narrowing is needed because many application servers use RMI-IIOP as
the communication protocol to access remote beans. However, some application
servers do not use RMI-IIOP and hence allow the use of Java language typecasts
as well. For portability you cannot rely on an application server allowing Java lan-
guage typecasts; you should always use the PortableRemoteObject.narrow

method. The overhead on this method call is usually quite small. In addition, EJB
containers that do not use RMI-IIOP typically optimize away all such overhead.

Note that the narrow method must not be used in the clients of local enterprise
beans since they are in the same JVM. The local enterprise beans are always type-
narrowed using the regular typecast of the Java programming language.

5.8.2 Mark Non-Serializable Fields Transient

To preserve a bean’s state during passivation, the bean class must be serializable.
This requires that all the non-transient fields of the bean class are serializable. Fields
that are primitive types, such as String and int, are serializable. However, a refer-

CHAPTER 5 THE ENTERPRISE JAVABEANS TIER166

DEA2e.book Page 166 Friday, March 8, 2002 12:31 AM
ence field, which is a field whose value is a reference to a class instance, is serializ-
able only if the referenced class implements java.io.Serializable. You must
mark all fields of non-serializable types as transient. The JVM’s serialization
machinery ignores fields marked as transient.

For example, a database connection represented by java.sql.Connection is
not serializable. It must be marked transient when declared inside an enterprise
bean class.

5.8.3 Bean-Managed Persistence and Portability

Extra effort is required to achieve portability for an enterprise bean that uses bean-
managed persistence, because the bean needs to ensure portability across all data-
bases as well as JDBC drivers.

The foremost factor affecting portability relates to the SQL language. Many
database vendors provide proprietary extensions to SQL to provide additional
functionality and to achieve higher performance. Consider using only standard
SQL constructs to achieve portability. If you do need to use proprietary exten-
sions, consider using the Data Access Object design pattern to encapsulate
vendor-specific code.

5.8.3.1 SQL and Database Connections

For maximum portability, it’s important to close SQL statements before you close
the database connection. Enterprise beans often need to open a database connection,
execute a set of SQL statements, then close the connection. Some JDBC driver
implementations throw an exception if a JDBC connection is closed while some of
the driver database statements are open. To achieve portability across JDBC drivers,
always close database statements before closing the database connection. The
finally block in Code Example 5.10 illustrates how this can be done.

public Page searchItems(String searchQuery,) {

Connection con = null;

PreparedStatement ps = null;

ResultSet rs = null;

String query = "SELECT";

try {

con = dataSource.getConnection();

ps = con.prepareStatement(query);

rs = ps.executeQuery();

PORTABILITY GUIDELINES 167

DEA2e.book Page 167 Friday, March 8, 2002 12:31 AM
// rest of the method body

} catch (....) { // handle exceptions

} finally {

if (rs != null) rs.close();

// Close PreparedStatement before Connection.

if (ps != null) ps.close();

if (c != null) c.close();

}

...

}

Code Example 5.10 Closing Database Connections

5.8.3.2 Relying on Instance Fields

Bean providers should not rely on a bean’s instance fields or container-managed per-
sistence accessor methods within ejbActivate, ejbLoad, ejbPassivate, and
ejbStore methods. This is because the container can choose several ways to
manage the life cycle of its enterprise beans. For example, in the ejbActivate

method the container is not required to load an entity bean’s instance fields from its
persistence store. Similarly, in the ejbPassivate method the container is not
required to store the instance fields to its persistence store. In addition, the container
is not required to allow accesses to resources from the ejbActivate or
ejbPassivate methods.

5.8.3.3 Avoid Exposing Resource-Specific Details

Bean providers should be especially careful to avoid including backend resource-
specific details in their components’ interfaces, since doing so may limit where the
components might be used. One easily overlooked form of resource dependence is
the set of exceptions a method may throw. Because bean-managed persistence
methods do not necessarily use a SQL database to manage their persistence,
SQLException should not be thrown in the bean-managed persistence method signa-
tures.

Instead of throwing SQLException, define system- and application-level
exceptions for the class and throw those exceptions in response to error condi-
tions. While using the Data Access Object (DAO) design pattern, catch the

CHAPTER 5 THE ENTERPRISE JAVABEANS TIER168

DEA2e.book Page 168 Friday, March 8, 2002 12:31 AM
resource-specific exceptions, such as SQLException, in the DAO class and trans-
late them to appropriate system-level or application-level exceptions.

Consider Code Example 5.11 from the sample application. In the method
searchItems, an SQLException is translated to a CatalogDAOSysException, which
extends java.lang.RuntimeException to indicate a system-level exception.

public class CatalogDAOImpl implements CatalogDAO {

....

public Page searchItems(String searchQuery, int start,

 int count, Locale l)

 throws CatalogDAOSysException {

....

try {

Connection con = getDBConnection();

PreparedStatement ps = con.prepareStatement("SELECT ...");

...

ps.executeQuery();

...

} catch (SQLException se) {

throw new CatalogDAOSysException("Malformed query.");

}

...

}

Code Example 5.11 Throwing Exceptions

The code throws an application exception if the user input to searchQuery is
incorrect. For errors such as an unavailable database connection, or general SQL
exceptions, a system exception should be thrown.

5.9 Summary

Distributed enterprise applications require a number of common services. These
include maintaining state, operating on shared data, participating in transactions,
servicing a large number of clients, providing remote access to data, and controlling
access to data. The middle tier of enterprise computing has evolved as the ideal
place to provide these services. The J2EE platform promotes the Enterprise Java-

SUMMARY 169

DEA2e.book Page 169 Friday, March 8, 2002 12:31 AM
Beans architecture as a way to provide the system services that most enterprise
applications need. The EJB architecture frees enterprise application developers from
concerns about these services, enabling them to concentrate on providing robust,
highly functional business logic.

The Enterprise JavaBeans architecture provides various types of enterprise
beans to model business objects: entity beans, stateful and stateless session beans,
and message-driven beans. Choose a particular enterprise bean type to model a
business concept depending on the application’s needs for robust data handling,
efficient behavior, and maintaining client state during a user session.

An entity bean provides an object-oriented view of stored data, such as rela-
tional data stored in a database; a stateless session bean gives a procedural view of
the data. An application component provider should use entity beans to model
logical entities such as records in a database. When implementing behavior to
visit multiple rows in a database and present a read-only view of data, stateless
session beans are the best choice. They are designed to provide generic services to
multiple clients.

Some business concepts actually require more than one view of data. An
example would be a catalog that provides browsing and searching services as well
as mechanisms to update the product information. In such cases, you can use a
stateless session bean to operate on product information as a whole and an entity
bean to provide access to a particular product.

Enterprise beans implemented as remote objects consume a significant
amount of system resources and network bandwidth. Because of this overhead,
they are not appropriate for modeling all business objects. Instead, an application
component provider can implement certain enterprise beans as local objects, with
a remote enterprise bean as a facade to the local beans. Or, you can use data access
objects to encapsulate database access and value objects to model objects that are
dependent on enterprise beans.

Also, it may not be appropriate to give clients direct access to all enterprise
beans used by an application. Some enterprise beans may act as mediators for
communication between clients and the EJB tier. Such beans can encapsulate
work flow specific to an application or can serve as an entry point to a hierarchy of
information.

CHAPTER 5 THE ENTERPRISE JAVABEANS TIER170

DEA2e.book Page 170 Friday, March 8, 2002 12:31 AM
5.10 References and Resources

For the complete Enterprise JavaBeans specification, see:

• Enterprise JavaBeans Specification, version 2.0. Copyright 2001, Sun Micro-
systems, Inc. <http://java.sun.com/products/ejb>

For more information on EJB and its effective use, see:

• Applying Enterprise JavaBeans: Component-Based Development for the J2EE
Platform. V. Matena, B. Stearns. Copyright 2001, Addison-Wesley.

• Mastering Enterprise JavaBeans, 2nd edition. E. Roman, S. Ambler, T. Jew-
ell. Copyright 2002, Wiley.

• Enterprise JavaBeans, 3rd edition. R. Monson-Haefel. Copyright 2001,
O’Reilly.

• Core J2EE Patterns: Best Practices and Design Strategies. D. Alur, J. Crupi,
D. Malks. Copyright 2001, Prentice-Hall.

DEA2e.book Page 171 Friday, March 8, 2002 12:31 AM
C H A P T E R 6

Integrating with the

Enterprise Information
System Tier

by Rahul Sharma and Beth Stearns

THIS chapter focuses on the integration of enterprise applications with existing
enterprise information systems (EIS) and applications. Enterprise information
systems provide the information infrastructure critical to the business processes of
an enterprise. Examples of EISs include relational databases, enterprise resource
planning (ERP) systems, mainframe transaction processing systems, and legacy
database systems.

The EIS integration problem has assumed great importance because enter-
prises are striving to leverage their existing systems and resources while adopting
and developing new technologies and architectures. Today, enterprise application
development is more about integration rather than developing an enterprise appli-
cation from scratch. Enterprises cannot afford to discard their existing investments
in existing applications and EISs. The emergence of Web-based architectures and
Web services has made it more imperative for enterprises to integrate their EISs
and applications and expose them to the Web.

The EIS integration problem is one part of the broader scope of enterprise
application integration (EAI). EAI entails integrating applications and enterprise
data sources so that they can easily share business processes and data. This
171

CHAPTER 6 INTEGRATING WITH THE ENTERPRISE INFORMATION SYSTEM TIER172

DEA2e.book Page 172 Friday, March 8, 2002 12:31 AM
chapter focuses on the following aspects of EAI, and includes discussions of rec-
ommended guidelines:

• Application integration—Existing enterprise applications may be off-the-
shelf bundled applications or they may be developed in-house. Two examples
are supply chain management (SCM) and customer relationship management
(CRM) applications. While such applications expose business level function-
ality used directly by end users or integrated with other enterprise applications,
they usually do not expose the underlying data on which the business function-
ality is built.

• Data integration—An enterprise environment often contains more than one
database system upon which its business processes run. These database sys-
tems may be relational, object-based, hierarchical, file based, or legacy stores.
Data integration focuses on integrating existing data with enterprise applica-
tions. For example, an integration might entail integrating a Web-based order
management system with an existing order and customer database.

• Legacy integration—Legacy integration involves integrating new enterprise
applications with applications and EISs that have been in operation for some
time, often referred to as an enterprise’s “legacy” systems. An enterprise can-
not afford any disruption in these legacy systems. This chapter focuses on how
to connect enterprise applications to these legacy systems.

6.1 Integration Scenarios

A J2EE application may be configured in a number of different ways to access an
enterprise information system. The following sections illustrate a few typical enter-
prise information system integration scenarios.

6.1.1 An Internet E-Store Application

The sample application illustrates an Internet E-Store application. Company A
deploys the sample application to create an Internet E-Store. The application is com-
posed of a set of enterprise beans, JSP pages, and servlets that collaborate to provide
the overall functionality of the application. The database stores data related to
product catalogs, shopping carts, customer registration and profiles, and order
status.

INTEGRATION SCENARIOS 173

DEA2e.book Page 173 Friday, March 8, 2002 12:31 AM
The architecture of this application is illustrated in Figure 6.1.

Figure 6.1 An Internet E-Store Application

A customer uses a Web browser to initiate an e-commerce transaction with the
sample application. A customer

• Browses the catalog

• Makes a selection of products

• Puts the product selection into a shopping cart

• Enters a user name and password to initiate a secure transaction

• Fills in order-related information

• Places an order

Company A stores all persistent information about customers and their trans-
actions in an existing database that already contains product and inventory infor-
mation.

CHAPTER 6 INTEGRATING WITH THE ENTERPRISE INFORMATION SYSTEM TIER174

DEA2e.book Page 174 Friday, March 8, 2002 12:31 AM
6.1.2 An Intranet Human Resources Application

Company B has developed and deployed an employee self-service application based
on the J2EE platform. This application supports a Web interface to existing human
resources applications supported by the enterprise resource planning system from
Vendor X and provides additional business processes that are customized to the
needs of Company B.

Figure 6.2 illustrates an architecture for this application. The middle tier is
composed of enterprise beans and JSP pages that provide customization of busi-
ness processes and support a company standardized Web interface. This applica-
tion enables an employee (under the different roles of Manager, HR manager, and
Employee) to perform various personnel management functions: personal informa-
tion management, payroll management, compensation management, benefits
administration, travel management, and cost planning.

The company’s IT department deploys this application and enterprise
resource planning system in a secure environment at a single physical location.
Access to the application is permitted only to employees of the organization based
on their roles and access privileges, and within the confines of the organization-
wide intranet.

Figure 6.2 An Intranet Human Resources Application

6.1.3 A Distributed Purchasing Application

Company C has a distributed purchasing application whose Web-based interface an
employee can use to perform multiple purchasing transactions. An employee can

INTEGRATION SCENARIOS 175

DEA2e.book Page 175 Friday, March 8, 2002 12:31 AM
use the application to manage the procurement process, from creating a purchase
requisition to getting invoice approval. This application also integrates with the
existing financial applications in the enterprise for tracking financial aspects of the
procurement business processes.

Figure 6.3 illustrates an architecture for this application. The application as
developed and deployed on the J2EE platform is composed of JSP pages, enter-
prise beans, and existing information systems. The enterprise beans integrate a
logistics application that provides integrated purchasing and inventory manage-
ment functions from Vendor X and another that provides financial accounting
functions from Vendor Y.

Figure 6.3 A Distributed Purchasing Application

Company C is a large decentralized enterprise with geographically distributed
business units and departments. In this scenario, System X and System Y are
managed by different IT departments and have been deployed at secured data
centers in different geographic locations. The integrated purchasing application is
deployed at a location different from either System X or System Y.

System X and System Y are in different security domains; they use different
security technologies and have their own specific security policies and mecha-
nisms. The distributed purchasing application is deployed in a security domain
that is different from either that of System X or System Y.

CHAPTER 6 INTEGRATING WITH THE ENTERPRISE INFORMATION SYSTEM TIER176

DEA2e.book Page 176 Friday, March 8, 2002 12:31 AM
6.1.4 An Order Fulfillment Application

This scenario is an extension of the Internet E-Store scenario described in Section
6.1.1 on page 172 and which the sample application demonstrates as well. Company
A has an order fulfillment center that processes all orders placed on the Internet
E-Store Web site. A separate department within Company A owns this center. This
department maintains its own databases and has no access to the databases of the
Internet E-Store Web site. To decouple the data models of the two departments, the
order processing center requires that all orders sent to it are in XML format. Since
an order might require significant processing, the order processing center receives
orders asynchronously so that its clients can continue operation without waiting for
an order to be fulfilled.

By using automated rules for small orders, the order processing center can
process such orders without human intervention. All other orders require approval
by an administrator. When an order is successfully completed, the center sends a
confirmation e-mail to its customer. The administrator can also receive various
kinds of sales data, such as daily sales volume, sales per category, and so forth.

6.2 J2EE Integration Technologies

To address the EIS integration problem, the J2EE platform provides the following
EIS integration technologies:

• J2EE Connector architecture—The J2EE Connector architecture provides a
standard architecture for integrating J2EE applications with existing EISs and
applications. The Connector architecture enables adapters for external EISs to
be plugged into the J2EE application server. Enterprise applications can then
be developed using these adapters to support and manage secure, transactional,
and scalable integration with EISs. The 1.0 version of the Connector architec-
ture focuses on synchronous integration with EISs. The 2.0 version (under de-
velopment as part of J2EE 1.4) extends the core functionality to add support
for asynchronous integration with EISs. We expand on the synchronous and
asynchronous integration later in this chapter.

• Java Message Service (JMS)—JMS is a standard Java API defined for enter-
prise messaging systems. It is meant to be a common messaging API that can
be used across different types of messaging systems. A Java application uses
the JMS API to connect to an enterprise messaging system. Once connected,

J2EE INTEGRATION TECHNOLOGIES 177

DEA2e.book Page 177 Friday, March 8, 2002 12:31 AM
the application uses the facilities of the underlying enterprise messaging sys-
tem (through the API) to create messages and to communicate asynchronously
with one or more peer applications.

• JDBCTM API—The JDBC API defines a standard Java API for integration
with relational database systems. A Java application uses the JDBC API for
obtaining a database connection, retrieving database records, executing data-
base queries and stored procedures, and performing other database functions.

The following sections cover the Connector architecture, JMS, and the JDBC
API in more detail. For other sources of information on these topics, please refer
to “References and Resources” on page 200.

6.2.1 J2EE Connector Architecture

The J2EE Connector architecture is the standard architecture for integrating J2EE
products and applications with heterogeneous enterprise information systems. The
Connector architecture enables an EIS vendor to provide a standard resource
adapter for its enterprise information system. Because a resource adapter conforms
to the Connector architecture specification, it can be plugged into any J2EE-
compliant application server to provide the underlying infrastructure for integrating
with that vendor’s EIS. The EIS vendor is assured that its adapter will work with any
J2EE-compliant application server. The J2EE application server, because of its
support for the Connector architecture, is assured that it can connect to multiple
EISs.

The J2EE application server and EIS resource adapter collaborate to keep all
system-level mechanisms—transactions, security, connection management—
transparent to the application components. This enables an application component
developer to focus on a component’s business and presentation logic without
getting involved in the system-level issues related to EIS integration.

Through its contracts, the J2EE Connector architecture establishes a set of
programming design guidelines for EIS access. The J2EE Connector architecture
defines two types of contracts: system and application level. The system-level
contracts exist between a J2EE application server and a resource adapter. An
application-level contract exists between an application component and a resource
adapter. See Figure 6.4.

CHAPTER 6 INTEGRATING WITH THE ENTERPRISE INFORMATION SYSTEM TIER178

DEA2e.book Page 178 Friday, March 8, 2002 12:31 AM
Figure 6.4 Connector Architecture System and Application Contracts

The application-level contract defines the client API that an application com-
ponent uses for EIS access. The Connector architecture does not require that an
application component use a specific client API. The client API may be the
Common Client Interface (CCI), which is an API for accessing multiple heteroge-
neous EISs, or it may be an API specific to the particular type of resource adapter
and its underlying EIS. There are advantages to using CCI, principally that tool
vendors can build their tools on top of this API. Although the CCI is targeted pri-
marily towards application development tools and EAI vendors, it is not intended
to discourage vendors from using JDBC APIs. An EAI vendor will typically
combine JDBC with CCI by using the JDBC API to access relational databases
and using CCI to access other EISs.

The system-level contracts define a “pluggability” standard between applica-
tion servers and EISs. By developing components that adhere to these contracts,
an application server and an EIS know that connecting is a straight-forward opera-
tion of plugging in the resource adapter. The EIS vendor or resource adapter pro-
vider implements its side of the system-level contracts in a resource adapter,
which is a system library specific to the EIS. The resource adapter is the compo-
nent that plugs into an application server. Examples of resource adapters include

J2EE INTEGRATION TECHNOLOGIES 179

DEA2e.book Page 179 Friday, March 8, 2002 12:31 AM
an adapter that connects to an ERP system and one that connects to a mainframe
transaction processing system.

There is also an interface between a resource adapter and its particular EIS.
This interface is specific to the EIS, and it may be a native interface or some other
type of interface. The Connector architecture does not define this interface.

The Connector architecture defines the services that the J2EE-compliant
application server must provide. These services—transaction management, secu-
rity, and connection pooling—are delineated in the three Connector system-level
contracts. The application server may implement these services in its own specific
way. The three system contracts, which together form a Service Provider Interface
(SPI), are as follows:

• Connection management contract—This contract enables an application
server to pool connections to an underlying EIS, while at the same time it
enables application components to connect to an EIS. Pooling connections is
important to create a scalable application environment, particularly when large
numbers of clients require access to the underlying EIS.

• Transaction management contract—This contract is between the applica-
tion server’s transaction manager and an EIS that supports transactions. It
gives the transaction manager the ability to manage transactions across multi-
ple EIS resource managers. (A resource manager provides access to a set of
shared resources.) The contract also supports local transactions, which are
transactions that an EIS resource manager handles internally.

• Security contract—The security contract enables secure access to an EIS and
protects the EIS-managed resources.

Future versions of the Connector architecture will add support for a thread
management contract, enabling an application server to manage threads for its
resource adapters.

6.2.2 Java Message Service API

The Java Message Service (JMS) API is a standard Java API defined for enterprise
messaging systems. It is a common messaging API that can be used across different
types of messaging systems. A Java application uses the JMS API to connect to an
enterprise messaging system. Once connected, the application uses the facilities of
the underlying enterprise messaging system (through the API) to create messages
and to communicate asynchronously with one or more peer applications.

CHAPTER 6 INTEGRATING WITH THE ENTERPRISE INFORMATION SYSTEM TIER180

DEA2e.book Page 180 Friday, March 8, 2002 12:31 AM
A JMS provider implements the JMS API for an enterprise messaging system
and provides access to the services provided by the underlying message system.
Application server vendors include a JMS provider with the application server.
Currently, vendors plug a JMS provider into an application server in their own
vendor-specific manner. The Connector architecture 2.0 version defines a standard
for plugging a JMS provider into an application server, allowing a JMS provider
to be treated similarly to a resource adapter. However, a JMS provider will have a
JMS API as a client API for its underlying enterprise messaging system.

A client application, called a JMS client, uses the JMS API to access the asyn-
chronous messaging facilities provided by the enterprise messaging system. The
EJB tier is the best place to implement JMS clients in J2EE applications. Since
JMS supports peer-to-peer messaging, both source (or producer) and destination
(or consumer) applications act as clients to the JMS provider.

A JMS domain identifies the type of asynchronous message-based communi-
cation supported by a JMS provider and an enterprise messaging system. There
are two domain types: queue-based point-to-point domains and publish-subscribe
domains. A Java application using JMS has a different application programming
model depending on the JMS domain. For example, a Java application uses the
JMS-defined queue-based interfaces QueueConnectionFactory and MessageQueue,
among other queue-based interfaces, to interact with a point-to-point domain.

6.2.3 JDBC and RDBMS Access

Relational database management systems (RDBMS) are the most prevalent form of
enterprise data store. Many application component providers use the JDBC 2.0 or
3.0 API for accessing relational databases to manage persistent data for their appli-
cations.

The JDBC API has two parts: a client API for direct use by developers to
access relational databases and a standard, system-level contract between J2EE
servers and JDBC drivers for supporting connection pooling and transactions.
Developers do not use the contract between J2EE servers and JDBC drivers
directly. Rather, J2EE server vendors use this contract to provide pooling and
transaction services to J2EE components automatically. Note that, according to
the JDBC 3.0 specification, the JDBC system-level contracts can be the same as
the Connector architecture system contracts. Conceptually, JDBC drivers are
pluggable resource adapters.

APPLICATION INTEGRATION DESIGN APPROACHES 181

DEA2e.book Page 181 Friday, March 8, 2002 12:31 AM
An application component provider uses the JDBC client-level API for such
operations as obtaining a database connection, retrieving database records, exe-
cuting queries and stored procedures, and performing other database functions.

6.3 Application Integration Design Approaches

The EIS integration approaches may be classified as shown in Figure 6.5.

Figure 6.5 EIS Integration Design Approaches

• Data integration using the JDBC API (for relational databases) or Connector
architecture (for non-relational databases)

• Asynchronous, message-based, loosely-coupled integration using the JMS and
J2EE Connector architecture

• Synchronous, tightly-coupled integration using the Connector architecture

• Legacy connectivity using the Connector architecture

CHAPTER 6 INTEGRATING WITH THE ENTERPRISE INFORMATION SYSTEM TIER182

DEA2e.book Page 182 Friday, March 8, 2002 12:31 AM
6.3.1 Synchronous Integration

This mode of integration involves synchronous communication between J2EE
applications and the target EIS. Synchronous communication between a J2EE appli-
cation and an EIS follows the request-response interaction model. An application
initiates a request to the target EIS. The application then blocks its processing in the
request invocation thread while it waits for a response from the EIS. The application
continues its execution after it receives the response.

Most EISs utilize a synchronous request-reply interaction model. Typically,
an EIS defines an API for remote function calls that applications use to issue syn-
chronous requests to the EIS. For example, an EIS might define an API that
includes a remote function to create an account receivable item in the EIS. An
enterprise application invokes this remote function on the EIS to create an account
receivable item and waits until it receives a reply containing the results of the
function’s execution on the EIS. This interaction is synchronous because the
calling application’s invocation thread waits synchronously while the function
executes on the EIS and continues when the remote function returns.

The 1.0 version of the Connector architecture supports a synchronous request-
response interaction mode where an application component initiates the synchro-
nous request. The application server and resource adapter for the underlying EIS
manage transaction and security through the system contracts provided in this
synchronous request-response interaction mode. The resource adapter takes the
responsibility to propagate the security and transaction context to its underlying
EIS using an EIS-specific communication protocol.

Synchronous interaction leads to tight coupling between a J2EE application
and an EIS. You should consider the implications of this when integrating applica-
tions with EISs. Consider a typical scenario where a J2EE application needs to
access an EIS to process client-initiated requests. The application itself may be
designed to handle multiple concurrent client requests. It may employ either a
multithreaded implementation or multiple application instances may be running
on multiple application server processes. When an application instance receives a
client request, it synchronously invokes an EIS function. The invocation thread in
the application process is then blocked from further processing until it receives a
reply from the target EIS.

Suppose that the target EIS has a limited load capacity; that is, the EIS is
capable of handling only a limited number of concurrent requests on a limited
number of connections. As a result, the EIS is unable to process the same number
of concurrent requests as the application. In a tightly-coupled synchronous inte-

APPLICATION INTEGRATION DESIGN APPROACHES 183

DEA2e.book Page 183 Friday, March 8, 2002 12:31 AM
gration, the application’s response time and throughput for client requests may
drop since it must wait for synchronous invocations on the EIS to complete.

Synchronous remote function calls typically expose underlying distribution
and transaction management mechanisms, which may be vendor specific or based
on a middleware standard. When these mechanisms are exposed, the application
may become tightly coupled to the middleware mechanisms for transactions, dis-
tribution, and security. This causes problems if the application needs to integrate
with other types of EISs, because its communication model must be redesigned to
handle different middleware mechanisms.

The tight coupling that results from synchronous communication also raises
issues about the relationship between an application and an EIS. The dependency
between the two may cause the application’s performance to be impeded by com-
munication failures. For example, if the EIS is down or unavailable, an application
request may return immediately with an error. The application logic needs to
include code to initiate retries of such failed requests, or the EIS may successfully
execute a request but be unable to reply because of a communications failure after
the request was received. To handle this, the application logic must include time-
outs or it will hang indefinitely waiting for a response.

6.3.2 Asynchronous Integration

Asynchronous integration involves message-based communication between a J2EE
application and EIS. An application sends a request to an EIS. The request sender
continues its own processing—that is, the application’s thread does not block—
while the EIS handles the request asynchronously. The request sender does not have
to wait for the EIS processing to complete and for the reply to come back. Instead,
the thread sends the message and continues processing client requests.

There are two forms of asynchronous message-based communication: queue-
based communication and publish-subscribe messaging. Queue-based communi-
cation, or point-to-point messaging, involves a message queue that is independent
of both sending and receiving applications. The message queue acts as a message
buffer between the communicating applications. The sender application sends a
message to this queue, while the receiver application receives its messages from
the queue.

With a publish-subscribe messaging mechanism, an application publishes
messages on a specific topic. Multiple applications, called subscribers, can sub-
scribe to this topic and receive the published messages. The publish-subscribe

CHAPTER 6 INTEGRATING WITH THE ENTERPRISE INFORMATION SYSTEM TIER184

DEA2e.book Page 184 Friday, March 8, 2002 12:31 AM
facility manages delivery of published messages to applications subscribing to the
topic.

Regardless of the messaging communication, a message represents structured
data exchanged through asynchronous message-based communication. A message
carries information used within a single enterprise’s business processes or across
the business processes of multiple enterprises. For example, a message can repre-
sent information required to invoke an EIS function. Another message can carry
the returned value of this function invocation.

When using asynchronous communication, an application and an EIS are said
to be loosely coupled. With loose coupling, an application thread can continue
processing client requests without blocking on EIS performance or communica-
tion glitches. The application is not bound to the EIS or the communication deliv-
ery mechanism.

An enterprise messaging system may support both publish-subscribe and
queue-based messaging, as well as the following services:

• Message routing—A messaging system processes and routes messages to one
or more peer applications. The messaging system uses the routing information
carried within a message.

• Transaction management—A messaging system can act as a transactional
resource manager, allowing a client application to use a transaction model to
interact with the messaging system. For example, a client application can pro-
duce a set of messages and use a transaction to group the messages together
into a single atomic unit of work. When the transaction commits, the messag-
ing system sends the set of messages as one unit. If the transaction rolls back,
the messaging system discards the entire set of messages produced within the
rolled back transaction.

• Reliable message delivery—A messaging system can provide different levels
of message delivery semantics, from making an attempt to deliver the message
(called at-most-once delivery) to guaranteeing that the message is delivered
(called exactly-once delivery).

• Message priority and ordering—A messaging system can permit applica-
tions to assign priorities to messages and to indicate that messages should be
delivered in serial order. The messaging system delivers messages assigned a
higher priority ahead of those assigned a lower priority.

• Message transformation—Advanced messaging systems support message

APPLICATION INTEGRATION DESIGN APPROACHES 185

DEA2e.book Page 185 Friday, March 8, 2002 12:31 AM
transformation and the use of rules engines. When a message flows through
such a messaging system, it may be transformed based on the system’s config-
ured set of rules and defined message schemas. For example, the messaging
system may transform the format of a particular message to one that is better
understood by the intended consumer. The message system first transforms the
message, then routes the message to the appropriate consumer application.

6.3.3 Comparing Approaches

When designing your application, you need to decide whether to use synchronous or
asynchronous integration with its target EISes and existing applications. Both syn-
chronous and asynchronous integration approaches are valid for application integra-
tion, and the choice should be based on the integration requirements and use cases.
Base your decision on the following guidelines.

• Quality of services required—The use of a queue or a publish-subscribe sys-
tem provides higher quality of services, such as message routing and reliable
message delivery, than synchronous communications.

• Application throughput—Asynchronous messaging can lead to better
throughput because a queue buffers messages, supports message routing, and
guarantees message delivery.

• Transactional integration—A synchronous communication model is more
suitable when an application needs to perform secure and transactional access
to one or more EISes synchronously for client request processing. In such
cases an application can afford the overhead of tighter coupling with an EIS to
ensure higher quality request processing and error handling.

• Programming model complexity—An asynchronous communication pro-
gramming model is more complex than the more common synchronous
request-response model. While the asynchronous model provides more servic-
es, the cost is greater application complexity and more work on the part of de-
velopers.

6.3.4 Data Integration

A J2EE application developed using the J2EE component model may need to inte-
grate with existing data. The existing data may be relational, object-based, hierarchi-
cal, or some legacy representation. The problem is magnified when the existing data

CHAPTER 6 INTEGRATING WITH THE ENTERPRISE INFORMATION SYSTEM TIER186

DEA2e.book Page 186 Friday, March 8, 2002 12:31 AM
is huge (such as millions of records) and the schema is complex. Often, it’s not pos-
sible to change the database schema because other applications depend on it.

The JDBC API is recommended for integration with relational databases.
This book does not provide a primer for JDBC since there are numerous other
sources to learn about JDBC. (See “References and Resources” on page 200.)
Instead, this chapter focuses on J2EE application design issues related to database
access.

For non-relational and legacy databases, the J2EE Connector architecture
defines a simple tool-focused Common Client Interface (CCI) API that resource
adapters can implement. (Note that Connector architecture does not require CCI,
but recommends it for toolability.) CCI provides a remote function call API that
can be used to develop or generate higher-level abstractions to simplify access to
the underlying EISs.

Data integration can be handled on two levels:

• Model a J2EE application using the EJB programming model. Use entity beans
and stateful and stateless session beans to partition a J2EE application. Devel-
op the EJB components and then map them to the existing schema. Whenever
possible, use EJB container-managed persistence. See Chapter 5.

• Develop or generate abstractions (called access objects) that represent the un-
derlying existing data and stored procedures. These abstractions bridge the gap
between the EJB components and the existing data. See Section 6.4.3 on page
188.

6.4 Developing an Integration Layer

The J2EE application programming model for EIS integration defines a set of
design choices, guidelines, and recommendations for application component pro-
viders. These guidelines enable an application component provider to develop an
application based on its overall functional and system requirements. The application
programming model focuses on the following aspects:

• Programming access to data and functions

• Using tools to simplify and reduce application development effort involved in
accessing EISes

• Getting connections to an EIS and managing connections

DEVELOPING AN INTEGRATION LAYER 187

DEA2e.book Page 187 Friday, March 8, 2002 12:31 AM
• Supporting the security requirements of an application

The following sections describe each of these aspects from the perspective of
relational database access using JDBC API, with the exception of transactions,
which are discussed in Chapter 8. An important point to note is that the following
sections are not meant to be a programmer’s guide to using the JDBC API. While
the following discussions refer to the JDBC API, the concepts are generic and
apply to any client APIs (including the Common Client Interface) supported by
resource adapters.

6.4.1 Programming Access to Data and Functions

When an application requires access to an enterprise information system, an appli-
cation component provider is responsible for developing code to access resources
managed by the enterprise information system, including tables, stored procedures,
business objects, and transaction programs. The application component provider
also has to write the business and application logic when developing functionality
for applications that target enterprise information system.

In the J2EE programming model, a container assumes primary responsibility
for managing connection pooling, transactions, and security. The level of service
provided is based on the declarative specification of the application requirements
by an application component provider or deployer. This leaves an application
component provider to concentrate on developing code to access the data and
functions managed by an enterprise information system.

6.4.2 Using Tools for EIS Integration

Application development tools can simplify EIS integration. By supporting end-to-
end application development, tools also minimize the difficulties of working with
vendor-specific client APIs. Different tools provide different functionality within the
application development process. Generally, tools can be divided into these func-
tional areas:

• Data and function mining tools, which enable application component provid-
ers to look at the scope and structure of data and functions in an existing infor-
mation system

• Object-oriented analysis and design tools, which enable application compo-
nent providers to design an application in terms of enterprise information sys-
tem functionality

CHAPTER 6 INTEGRATING WITH THE ENTERPRISE INFORMATION SYSTEM TIER188

DEA2e.book Page 188 Friday, March 8, 2002 12:31 AM
• Application code generation tools, which generate higher level abstractions for
accessing data and functions. A mapping tool that bridges different program-
ming models, such as an object to relational mapping, falls into this category.

• Application composition tools, which enable application component providers
to compose application components from generated abstractions (such as those
described in previous bullets). These tools typically use the JavaBeans compo-
nent model to enhance ease of programming and composition.

• Deployment tools, which are used by application component providers and de-
ployers to set transaction, security, and other deployment time requirements

6.4.3 Developing EIS Access Objects

A component can access data and functions in an enterprise information system in
several ways, either directly by using the appropriate client API or indirectly by
abstracting the complexity and low-level details of an EIS access API into higher
level access objects. Access objects can take different forms—they can be data
access objects (as described in Chapter 5), command beans, or records. There are
advantages to using access objects, as follows:

• An access object can adapt a low-level API for accessing EIS data and func-
tions to an easy-to-use API that is consistent across multiple types of enterprise
information systems. For example, an access object may follow a design pat-
tern that maps EIS function parameters to setter methods and return values to
getter methods. The application component provider uses an EIS function by
first calling the appropriate setter methods to set up the parameters, then call-
ing the method corresponding to the EIS function, and finally calling the getter
methods to retrieve the results.

• An access object facilitates a component’s ability to adapt to different EIS re-
sources. For example, a component can use an access object to adapt its per-
sistent state management to a different database schema or to a different type
of database.

• A component can be composed from access objects that support the JavaBeans
model or, by using application development tools, the component can be
linked with generated access objects. This simplifies the application develop-
ment effort.

DEVELOPING AN INTEGRATION LAYER 189

DEA2e.book Page 189 Friday, March 8, 2002 12:31 AM
Access objects primarily provide a programming technique to simplify appli-
cation development. Because of this, we recommend that they be used whenever
an application component provider needs to access data or functions in an EIS. In
some cases, tools may be available to generate such access objects. In other cases,
the application component provider may need to hand-code an access object.

6.4.3.1 Types of Access Objects

There are different types of access objects, and these different access objects are
used for different purposes. This section highlights the different access objects and
their purposes.

6.4.3.1.1 Command Beans

An access object can encapsulate one or more EIS functions, such as business func-
tions or stored procedures. This type of access object is referred to as a command
bean. An application component uses a command bean to interact with a resource
adapter and execute an EIS function. The command bean is associated with a
remote EIS function, hiding the low-level programming aspects of accessing the
function. The application component, rather than having to program through the
CCI or EIS client-side API, instead accesses the EIS function by programming to
the command bean’s interface.

Code Example 6.1 implements a command bean that drives a purchase requi-
sition business process in an enterprise resource planning system by mapping pur-
chasing functions to method calls on a PurchaseFunction object.

PurchaseFunction pf = // instantiate access object for

// PurchaseFunction

// set fields for this purchase order

pf.setCustomer ("Wombat Inc");

pf.setMaterial (...);

pf.setSalesOrganization (...);

pf.execute ();

// now get the result of purchase requisition using getter methods

Code Example 6.1 Command Bean Code

CHAPTER 6 INTEGRATING WITH THE ENTERPRISE INFORMATION SYSTEM TIER190

DEA2e.book Page 190 Friday, March 8, 2002 12:31 AM
6.4.3.1.2 Data Access Objects

When an access object encapsulates access to persistent data, such as that stored in a
database management system, it is called a data access object (DAO). Often, tools
generate data access objects based on the database schema. Data access objects can
provide a consistent API across different types of database management systems.
The sample application uses data access objects that correspond to order objects
stored in different types of databases.

The principal advantage of data access objects is that they decouple the user
of the object from the programming mechanism that accesses the underlying data.
The DAO exposes the same interface to its clients regardless of the API it uses to
access the EIS data. Even changes to the schema or function specification of the
EIS may not impact the DAO’s user interface. This means that the user’s program-
ming model does not have to change when EIS access mechanisms change or
there are modifications to the EIS schema.

Code Example 6.2 shows a data access object that provides access to products
in a product catalog. This product catalog is stored in a non-relational database.
CatalogDAO is an object that provides a simple interface for getting products in the
product catalog. CatalogDAO extends a DAO base class that may be specific to a
tool or an EAI framework.

public class CatalogDAO extends com.example.tool.DAO {

private RecordFactory rf;

public CatalogDAO(Connection cx, RecordFactory rf) {

super(cx);

this.rf = rf;

}

public Collection getAllProducts() throws DAOException {

try {

MappedRecord input =

rf.createMappedRecord("PRODUCT_INPUT_RECORD");

input.put("ORDER-ID", "*");

IndexedRecord output =

rf.createIndexedRecord("PRODUCT_INFO_RECORD");

InteractionSpecImpl ixSpec = new InteractionSpecImpl();

ixSpec.setFunctionName("GET_PRODUCTS");

ixSpec.setInteractionVerb

(InteractionSpec.SYNC_SEND_RECEIVE);

Interaction ix = cx.createInteraction();

ix.execute(ixSpec, input, output);

DEVELOPING AN INTEGRATION LAYER 191

DEA2e.book Page 191 Friday, March 8, 2002 12:31 AM
java.util.Iterator iterator = output.iterator();

while (iterator.hasNext()) {

// Get a record element and extract value

// Add element to the collection

}

// Return Collection

} catch (ResourceException re) {

// ... Handle exception

}

}

// other DAO class methods

}

Code Example 6.2 Example of a Data Access Object

Code Example 6.3 shows how an application component might use the
CatalogDAO data access object. The application component first instantiates the
CatalogDAO object and then uses a get method to retrieve products in the product
catalog.

public Product getProduct(String productID, Locale locale) {

try {

CatalogDAO dao =ProductCatalogDAOFactory.getDAO ();

return dao.getProduct (productID, locale);

} catch (...) {

//... Handle exceptions

}

}

Code Example 6.3 Using a Data Access Object

An access object can aggregate access to other access objects, thus providing
a higher level of abstraction and functionality. For example, a PurchaseOrder

aggregate access object can access a purchase order business function using a
command bean and can also use a data access object to maintain persistent
attributes of the purchase order. An aggregate access object can also encapsulate

CHAPTER 6 INTEGRATING WITH THE ENTERPRISE INFORMATION SYSTEM TIER192

DEA2e.book Page 192 Friday, March 8, 2002 12:31 AM
logic to process multiple access objects in a specific order. Such aggregate access
objects are generated by tools.

6.4.3.1.3 Record Objects

Another type of access object, called a record object, is used to represent a data
structure. It can be used to hold input or output data for an EIS function. A record
object can be a custom implementation, in which case a tool generates the object
from the meta information in a repository, or it can be a generic implementation, in
which case it extracts meta information from a metadata repository at runtime. Such
meta information includes type mapping and data representation.

6.4.3.2 Using Access Objects

A component can use access objects in different ways depending on the functional-
ity they offer. Some common ways to use access objects are:

• Define a one-to-one association between components and access objects. That
is, each access object encapsulates the EIS functionality required by a particu-
lar component. This approach enables components to have Web access to the
EIS resources encapsulated by an access object.

• Define components to aggregate the behavior of multiple access objects. This
approach is often used when a component accesses multiple EIS resources or
adds additional business logic to the functionality defined by multiple EIS re-
sources.

6.4.3.3 Guidelines for Access Objects

There are some general guidelines to follow in developing access objects:

• An access object should not make assumptions about the environment in which
it will be deployed and used.

• An access object should be designed to be usable by different types of compo-
nents. For example, if an access object follows the set-execute-get design pat-
tern described previously, then its programming model should be consistent
across both enterprise beans and JSP pages.

DEVELOPING AN INTEGRATION LAYER 193

DEA2e.book Page 193 Friday, March 8, 2002 12:31 AM
• An access object should not define declarative transaction or security require-
ments of its own. It should follow the transaction and security management
model of the component that uses it.

• All programming restrictions that apply to a component apply to the set of ac-
cess objects associated with it. For example, an enterprise bean isn’t allowed
to start new threads, to terminate a running thread, or to use any thread syn-
chronization primitives. Access objects should conform to the same restric-
tions.

6.4.4 Guidelines for Connection Management

It is important that application servers and components manage connections effi-
ciently. Connections are expensive to create and remove. If an application server
creates a new connection for each component’s request, and then destroys the con-
nection when the component completes its work, it is virtually impossible to support
large numbers of users. To avoid this problem, J2EE application servers support
connection pooling. While each application server can implement its own connec-
tion pooling mechanism, adhering to the Connector architecture ensures that
pooling is efficient, scalable, and extensible.

An application server, by providing connection pooling, enables connections
to be shared among client sessions so that a larger number of concurrent sessions
can access an EIS. If each component acquires an EIS connection and holds it
until its removal, it is difficult to scale up an application to support thousands of
users. Since holding on to an EIS connection across long-lived instances or trans-
actions is expensive, and since there is often a physical limitation to the number of
connections to an EIS, components must manage connections efficiently. Applica-
tion component providers need to follow sound connection management prac-
tices.

Connection management is especially important when applications migrate
from two-tier to multitier component-based architecture. For example, a two-tier
JDBC application may share a single connection across an entire application.
However, after migrating to component-based partitioning, the same application
must deal with shared connections across multiple component instances.

Application developers should follow the standard J2EE programming model
for connection management; that is, application code should use the JNDI
namespace to look up a connection factory instance. The same programming
model is used for the creation of JDBC, CCI, or JMS connections.

CHAPTER 6 INTEGRATING WITH THE ENTERPRISE INFORMATION SYSTEM TIER194

DEA2e.book Page 194 Friday, March 8, 2002 12:31 AM
In the standard programming model, the component provider specifies con-
nection factory requirements for an application component in the deployment
descriptor. For example, a bean provider specifies four elements in the deploy-
ment descriptor for a connection factory reference. (Refer to the EJB 2.0 specifi-
cation for details on deployment descriptor elements for EJB components.)

• res-ref-name: jdbc/CatalogDB

• res-type: javax.sql.DataSource

• res-auth: Application or Container

• res-sharing-scope: Shareable or Unshareable

The res-auth element should be set to Container so that the container
manages the EIS sign on while creating connections. See Section 6.4.5 on page
196.

The application component looks up a connection factory instance in the com-
ponent’s environment using the JNDI API.

// obtain the initial JNDI Naming context

Context ctxt = new InitialContext();

// perform JNDI lookup to obtain resource manager connection factory

javax.sql.DataSource ds = (javax.sql.DataSource)

ctxt.lookup("java:comp/env/jdbc/CatalogDB");

The JNDI name passed in the method NamingContext.lookup is the same as
that specified in the res-ref-name element.

Next, the application component invokes the getConnection method on the
connection factory to get an EIS connection. The returned connection instance
represents an application-level handle to an underlying physical connection.

// Invoke factory to obtain a connection

java.sql.Connection con = ds.getConnection();

Once it has acquired the connection, the application component uses it to
interact with the EIS. When the application component completes its work, it
should invoke the Connection.close method on the acquired connection instance.
Closing the connection enables the application server to manage the connection
pool more effectively.

DEVELOPING AN INTEGRATION LAYER 195

DEA2e.book Page 195 Friday, March 8, 2002 12:31 AM
The bean provider can control the extent that connections are shared. By
default, other enterprise beans in the application that use the same resource in the
same transaction context can share the connection. The bean provider can set the
res-sharing-scope deployment descriptor element to Unshareable to indicate
that a connection not be shared. Keep in mind, though, that sharing connections to
a resource manager allows the container to optimize connection and local transac-
tion use. It is recommended that connections be marked Shareable.

6.4.4.1 Connection Management by Component Type

A J2EE application is typically composed of components of different types: JSP
pages, servlets, and enterprise beans. These component types vary in terms of their
support for container-managed activation and passivation, execution of an instance
for multiple clients, sharing of an instance across multiple clients, and other factors.
Since connection management can vary by component type, an application compo-
nent provider must account for such differences when deciding on a connection
management model for an application. Here are a few examples that illustrate these
differences.

A JSP page or servlet acquires and holds on to a connection to an EIS,
whether that connection is initiated through the CCI or JDBC, in relation to the
life cycle of its HTTP session. The JSP page or servlet can handle multiple HTTP
requests across a single HTTP session, provided that those requests come from
Web clients using the same EIS connection.

A stateful session bean can share an open connection and its client-specific
query results across multiple methods. However, keep in mind that stateless
session beans are designed to retain no state specific to a client. As a result, while
stateless session beans can share a connection across methods, they maintain no
client-specific state associated with the connection.

For entity beans, the EJB specification identifies methods that are allowed to
perform EIS access through a connection. These include ejbCreate,
ejbPostCreate, ejbRemove, ejbFind, ejbActivate, ejbLoad, ejbStore, and any
business methods from the remote interface. An entity bean cannot access an EIS
from within the setEntityContext and unsetEntityContext methods because a
container does not have a meaningful transaction or security context when these
two methods are called.

CHAPTER 6 INTEGRATING WITH THE ENTERPRISE INFORMATION SYSTEM TIER196

DEA2e.book Page 196 Friday, March 8, 2002 12:31 AM
6.4.5 Security Guidelines

An application component provider follows the security model defined for the par-
ticular J2EE component—enterprise bean, JSP page, or servlet. Here are some
guidelines for handling security in all types of components:

• An application component provider should declaratively specify security
requirements for an application in the deployment descriptor. The security
requirements include security roles, method permissions, and the authentica-
tion approach for EIS sign on.

• Security can be managed at the application level by an application component
that is security aware. The component provider should include a simple pro-
grammatic interface through which the component manages security. This pro-
grammatic interface allows the application component provider to make access
control decisions based on the security context—the principal and role—asso-
ciated with the caller of a method and to do programmatic sign on to an EIS.
(See Section 6.4.5.1.2 on page 198.)

• Other development roles, such as the J2EE server provider, deployer, and sys-
tem administrator, should satisfy an application’s security requirements in the
operational environment. These security requirements are specified in the de-
ployment descriptor.

6.4.5.1 EIS Sign On

From a security perspective, the mechanism for getting a connection to a resource is
referred to as EIS sign on. A user requests a connection to be established under its
security context. This security context includes various attributes, such as role,
access privileges, and authorization level for the user. All application-level invoca-
tions to the database using this connection are then provided through the security
context associated with the connection.

If the EIS sign on mechanism involves authentication of the user, then an
application component provider can authenticate the user in one of two ways.

• The component provider allows the deployer to set up the EIS sign on infor-
mation and the container manages sign on. For example, the deployer sets the
user name and password for establishing the database connection. The contain-

DEVELOPING AN INTEGRATION LAYER 197

DEA2e.book Page 197 Friday, March 8, 2002 12:31 AM
er then takes the responsibility of managing the database sign on. This is some-
times referred to as container-managed EIS sign on.

• The component provider implements sign on to the database from the compo-
nent code. The component provides explicit security information for the user
requesting the connection. This is referred to as application-managed EIS
sign on.

We recommend that a component let the container manage EIS sign on. This
removes the burden of managing security information for the sign on from the
application component provider. It also enables J2EE servers to provide additional
useful security services, such as single sign on across multiple EISs and principal
mapping across security domains.

Container-managed EIS sign on has other advantages. It enables the applica-
tion component provider to avoid hard-coding security details in the component
code. A component with hard-coded security logic is less portable because its
code must be changed if deployed on containers with different security policies
and mechanisms.

6.4.5.1.1 Container-Managed Sign On

This section illustrates how the application component provider delegates the
responsibility of setting up and managing EIS sign on to the container. The deployer
sets up the EIS sign on so that the user account for connecting to the database is
always eStoreUser. The deployer also configures the user identification and authen-
tication information—user name and password—that is needed to authenticate
eStoreUser to the database.

Here is how to use the JDBC API for container-managed EIS sign on. Code
Example 6.4 shows the component code for invoking the connection request
method on the javax.sql.DataSource with no security parameters. As in the pre-
vious example, the component instance relies on the container to do the sign on to
the database using the security information configured by the deployer. Code
Example 6.5 contains the corresponding connection factory reference deployment
descriptor entry, where the res-auth element specifies that sign on is performed
by the container.

// Obtain the initial JNDI context

Context ctxt = new InitialContext();

// Perform JNDI lookup to obtain connection factory

javax.sql.DataSource ds = (javax.sql.DataSource) ctxt.lookup

CHAPTER 6 INTEGRATING WITH THE ENTERPRISE INFORMATION SYSTEM TIER198

DEA2e.book Page 198 Friday, March 8, 2002 12:31 AM
("java:comp/env/jdbc/CatalogDB");

// Invoke factory to obtain a connection.

// The security information is not given; thus it will be

// configured by the deployer.

java.sql.Connection conn = ds.getConnection ();

Code Example 6.4 Container-Managed Sign On with JDBC

<resource-ref>

<description>description</description>

<res-ref-name>jdbc/CatalogDB</res-ref-name>

<res-type>javax.sql.DataSource</res-type>

<res-auth>Container</res-auth>

</resource-ref>

Code Example 6.5 Connection Factory Reference Element

6.4.5.1.2 Application-Managed Sign On

With application-managed sign on, the application component provider performs a
programmatic sign on to the database. The component passes explicit security infor-
mation (user name, password) to the connection request method. Application-
managed sign on can be accomplished using the JDBC API. The component passes
the security information—the user’s name and the password—to the connection
request method of the javax.sql.DataSource. See Code Example 6.6.

// Obtain the initial JNDI context

Context ctxt = new InitialContext();

// Perform JNDI lookup to obtain factory

javax.sql.DataSource ds = (javax.sql.DataSource) ctxt.lookup

("java:comp/env/jdbc/CatalogDB");

// Get connection passing in the security information

java.sql.Connection conn = ds.getConnection

("eStoreUser", “password");

Code Example 6.6 Application-Managed Sign On with the JDBC API

SUMMARY 199

DEA2e.book Page 199 Friday, March 8, 2002 12:31 AM
6.4.5.2 Handling EIS Access Authorization

An application component provider relies on both the container and the EIS for
authorizing access to EIS data and functions. The application component provider
specifies security requirements for application components declaratively in a
deployment descriptor. A set of security roles and method permissions can be used
to authorize access to methods on a component. For example, an application compo-
nent provider declaratively specifies the PurchaseManager role as the only security
role that is granted permission to call the purchase method on a PurchaseOrder

enterprise bean. The purchase method in turn drives its execution through an ERP
logistics application by issuing a purchase requisition. In effect, this application has
authorized only end-users with the PurchaseManager role to do a purchase requisi-
tion. This is the recommended authorization model.

An application component provider can also programmatically control access
to enterprise information system data and functions based on the principal or role
associated with the client who initiated the operation. For example, the EJB speci-
fication allows component code to invoke getCallerPrincipal and
isCallerInRole to get the caller’s security context. An application component
provider can use these two methods to perform security checks that cannot be
expressed declaratively in the deployment descriptor.

An application can also rely on an enterprise information system to do access
control based on the security context under which a connection to the enterprise
information system has been established. For example, if all users of an applica-
tion connect to the database as dbUser, then a database administrator can set
explicit permissions for dbUser in the database security domain. The database
administrator can deny dbUser permission to execute certain stored procedures or
to access certain tables.

6.5 Summary

This chapter has described designs and guidelines for integrating enterprise infor-
mation systems into enterprise applications. These guidelines enable an application
component provider to develop an enterprise application based on its overall func-
tional and system requirements for EIS integration. The chapter focuses on access-
ing EIS resources from a component, using tools to simplify and reduce application
development effort involved in accessing EISes, obtaining and managing connec-
tions to EISes, and supporting the security requirements of an application.

CHAPTER 6 INTEGRATING WITH THE ENTERPRISE INFORMATION SYSTEM TIER200

DEA2e.book Page 200 Friday, March 8, 2002 12:31 AM
The current version of the J2EE platform includes the Connector architecture
version 1.0, which provides full support for integrating all types of enterprise
information systems, including database and legacy systems, with the J2EE plat-
form. The JDBC API is also available for accessing relational databases. Asyn-
chronous messaging is available through the JMS API.

6.6 References and Resources

We recommend the following publications for more information on enterprise appli-
cation integration. For more details on the J2EE Connector architecture:

• The J2EE Connector Architecture. R. Sharma, B. Stearns, T. Ng. Copyright
2001, Sun Microsystems, Inc.

• The J2EE Connector Specification, versions 1.0 and 2.0. Sun Microsystems,
Inc. <http://java.sun.com/products/j2ee>

For complete information on JDBC, see:

• JDBC API Tutorial and Reference, Second Edition. S. White, M. Fisher, R.
Cattell, G. Hamilton, M. Hapner. Copyright 2001, Sun Microsystems, Inc.

• JDBC 2.0 API, (JDBC specification). Copyright 1998, 1999, Sun Microsys-
tems, Inc. Available at <http://java.sun.com/products/jdbc>

• JDBC 3.0 API, (JDBC specification). Copyright 2000, Sun Microsystems, Inc.
Available at <http://java.sun.com/products/jdbc>

• JDBC 2.0 Standard Extension API (JDBC extension specification). Copyright
1998, 1999, Sun Microsystems, Inc. Available at
<http://java.sun.com/products/jdbc>

For more information on JMS, see:

• Java Message Service, Version 1.0.2 (JMS Specification). Copyright 1998,
Sun Microsystems, Inc. Available at <http://java.sun.com/products/jms>

• Java Message Service API and Tutorial. M. Hapner, R. Sharma, K. Haase.
Copyright 2002, Sun Microsystems, Inc.

DEA2e.book Page 201 Friday, March 8, 2002 12:31 AM
C H A P T E R 7

Packaging and Deployment

by Inderjeet Singh and Vijay Ramachandran

THE Java 2 Platform, Enterprise Edition, enables developers to assemble applica-
tions from components. The process of assembling components into modules, and
modules into enterprise applications, is called packaging. Well-designed, reusable
components can be customized to their operational environment. The process of
installing and customizing an application in an operational environment is called
deployment. To be customizable, components need to be configurable. However,
application developers should not have to repeatedly reinvent a configuration mech-
anism. They need a standard mechanism that provides flexibility for configuration
and supports using tools to help the process.

The J2EE platform provides facilities to make the packaging and deployment
process simple. It uses Java Archive (JAR) files as the standard package for
modules and applications, and XML-based description and customization of com-
ponents and applications. This chapter begins with an overview of the packaging
and deployment process for the J2EE platform. It describes how to perform each
stage in the process and provides guidelines for each stage. It concludes by dis-
cussing requirements for tools that support the deployment process.

7.1 Packaging Components

A J2EE component (such as a servlet or an enterprise bean) is an independent func-
tional software unit that conforms to interfaces defined by a component specifica-
tion, and has only explicit dependencies on its environment. A component may be a
single class, but more often is a collection of classes, interfaces, and resources. The
201

CHAPTER 7 PACKAGING AND DEPLOYMENT202

DEA2e.book Page 202 Friday, March 8, 2002 12:31 AM
J2EE platform offers five types of components: enterprise beans, servlets and JSP
pages, applets, application clients, and connectors.

The J2EE platform specification provides a way to bundle one or more com-
ponents into a module, which is the smallest unit of independent deployment for
any component type. A module may be deployed directly into a J2EE container,
or one or more modules may be combined to form a J2EE application. For exam-
ple, several enterprise bean components may be packaged into an EJB module
that provides all or part of an application model, and that EJB module may be
further combined with other modules to create a J2EE application.

Modules and applications for the J2EE platform are packaged and deployed
as deployment units, which are compressed archive files similar to JAR files, but
with a specified internal structure and file extension. There are four types of J2EE
platform modules:

• EJB modules contain enterprise beans and related classes.

• Web modules contain web-tier components and resources.

• Application client modules contain application client classes.

• Resource adapter modules contain Java connectors, resource adapters, and
support libraries and resources.

The deployment unit for each type of module has a structure defined by the
corresponding component technology specification. For example, a Web module
deployment unit is called a “Web archive,” which has (among other things) a WEB-

INF directory containing support files for the module. One or more J2EE platform
modules can be composed into a J2EE application, which has its own type of
deployment unit.

In addition to components and resources, each deployment unit contains a
deployment descriptor, which is an XML file that specifies the explicit dependen-
cies between each component and its environment. Deployment descriptors
specify two kinds of information:

• Structural information—Meta-data that describes the components contained
in the deployment unit, their relationships to each other, and their external de-
pendencies. Structural information corresponds to hard-coded features that are
not configurable at deployment time. Such information includes the names of
enterprise bean home and remote interfaces and implementation classes, entity
bean primary key classes, the persistence mechanisms used, and so on. Envi-

ROLES AND TASKS 203

DEA2e.book Page 203 Friday, March 8, 2002 12:31 AM
ronment entry declarations and resource requirements are also part of structur-
al information. A component container uses structural information to manage
component instances at runtime.

Changing structural information in a deployment descriptor can cause a com-
ponent to operate incorrectly or not at all, because it must be consistent with
inherent hard-coded features. For example, an entity bean is an entity bean be-
cause it implements the EntityBean interface, and a deployment descriptor that
says otherwise is simply wrong.

• Assembly information—This optional information describes how the con-
tents of a deployment unit are composed with other deployment units to pro-
duce a new component. Assembly information includes enterprise bean
relationship names, descriptive entries, security roles, method permissions,
and the values of environment entries.

Assembly information in a deployment descriptor can be changed without
breaking the corresponding component, although doing so may alter the be-
havior of the assembled application.

See Code Example 7.1 and the text following it for an example of structural
and assembly information.

Each J2EE developer role has specific packaging and deployment responsibil-
ities.

7.2 Roles and Tasks

Three development roles play a part in the J2EE packaging and deployment process:
application component providers, application assemblers, and deployers. The pack-
aging and deployment tasks that each role performs are summarized in Figure 7.1.

CHAPTER 7 PACKAGING AND DEPLOYMENT204

DEA2e.book Page 204 Friday, March 8, 2002 12:31 AM
Figure 7.1 J2EE Packaging and Deployment Tasks

Developers in each of these roles create deployment units and perform spe-
cific tasks with the deployment descriptors of the deployment units they create.

7.2.1 Application Component Provider Tasks

Application component providers develop enterprise beans, HTML and JSP pages,
servlets, applets, application clients, and associated helper classes. They also create
the deployment descriptor for each component. Code Example 7.1 contains an
excerpt from the sample application’s enterprise bean deployment descriptor:

<session>

<description>This is the Catalog ejb</description>

<display-name>The Catalog</display-name>

<ejb-name>TheCatalog</ejb-name>

<local-home>

com.sun.j2ee.blueprints.catalog.ejb.CatalogLocalHome

</local-home>

<local>com.sun.j2ee.blueprints.catalog.ejb.CatalogLocal</local>

<ejb-class>

com.sun.j2ee.blueprints.catalog.ejb.CatalogEJB

</ejb-class>

<session-type>Stateless</session-type>

<transaction-type>Container</transaction-type>

ROLES AND TASKS 205

DEA2e.book Page 205 Friday, March 8, 2002 12:31 AM
<env-entry>

<env-entry-name>

ejb/catalog/CatalogDAOClass

</env-entry-name>

<env-entry-type>java.lang.String</env-entry-type>

<env-entry-value>

com.sun.j2ee.blueprints.catalog.dao.CatalogDAOImpl

</env-entry-value>

</env-entry>

<resource-ref>

<res-ref-name>jdbc/CatalogDataSource</res-ref-name>

<res-type>javax.sql.DataSource</res-type>

<res-auth>Container</res-auth>

</resource-ref>

</session>

Code Example 7.1 Descriptor Elements for an Entity Bean

Code Example 7.1 shows the deployment descriptor declaration of the sample
application’s catalog session bean. For this example, assembly information is
shown in italics and structural information is in regular code font. Notice that
structural information defines the public interface of the bean and the resources
the bean uses. Structural information corresponds to hard-coded features of the
bean, such as the classes it uses and the environment entries and resources it
accesses. Assembly information, such as the bean’s name, its description, and the
values of environment entries, can be changed without causing inconsistencies
with the code. Notice also that additional whitespace and newlines are significant
within deployment descriptor text elements, and so should usually be avoided,
except when it is truly desired. For example, text content to be used as a label may
include whitespace, but resource reference names must not.

An application component provider typically creates the structural informa-
tion in a deployment descriptor and may assign default values for some assembly
informations. Application assemblers and deployers change or define the assem-
bly information to configure the component for its role in an application, but
usually leave structural information unchanged.

CHAPTER 7 PACKAGING AND DEPLOYMENT206

DEA2e.book Page 206 Friday, March 8, 2002 12:31 AM
7.2.2 Application Assembler Tasks

Application assemblers combine existing components into applications and provide
application assembly information for the application as a whole. Code Example 7.2
is an excerpt from the sample application’s Web deployment descriptor:

<web-app>

...

<servlet>

<servlet-name>MainServlet</servlet-name>

<display-name>HTML Client Front Controller</display-name>

<description>no description</description>

<servlet-class>

com.sun.j2ee.blueprints.waf.controller.web.MainServlet

</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>webTierEntryPoint</servlet-name>

<url-pattern>*.do</url-pattern>

</servlet-mapping>

...

</web-app>

Code Example 7.2 Web Application Assembly Information

In the sample application, the application assembler uses the deployment
descriptor to configure servlet class MainServlet to serve all URLs ending in suffix
.do. The application assembler also defines the error pages that the application uses,
its security constraints and roles, and so on. The only structural information shown
in Code Example 7.2 is the servlet class. Everything else is assembly information
created by the application assembler.

7.2.3 Deployer Tasks

Deployers deploy J2EE components and applications into an operational environ-
ment. They use tools created by the J2EE product provider to install J2EE modules
and applications and configure them to their runtime environment. The J2EE plat-
form and its related specifications for releases prior to the J2EE 1.4 release define

PACKAGING J2EE APPLICATIONS 207

DEA2e.book Page 207 Friday, March 8, 2002 12:31 AM
some requirements for deployment tools, but do not define the interface between the
deployment tools and containers; therefore, deployment tools for these releases are
vendor-specific. Thus, prior to the J2EE 1.4 release, the deployment process is not
standardized and portable across products. However, the J2EE 1.4 release will stan-
dardize the deployment process so that work a deployer performs will be portable
across products.

Although the details differ from product to product, deployment typically
involves two high-level tasks:

1. Installation—The deployer moves the media to the server, generates the addi-
tional container-specific classes and interfaces that enable the container to
manage the components at runtime, and installs the components and additional
classes and interfaces into the J2EE server.

2. Configuration—The deployer resolves all the external dependencies declared
by the application component provider and follows the application assembly
instructions defined by the application assembler. For example, the deployer
configures the data sources that the application uses to persist data and maps
the security roles defined by the application assembler to the operational envi-
ronment’s user groups and accounts. In some cases, a qualified deployer may
customize the application components’ business logic at deployment time, us-
ing tools provided with a J2EE product. For example, a deployer may write ap-
plication code that wraps an enterprise bean’s business methods or may add a
company’s logo to a login JSP page.

7.3 Packaging J2EE Applications

A J2EE application is packaged as a portable deployment unit called an enterprise
archive (EAR) file. An EAR file is standard JAR file with a .ear extension. An EAR
file contains:

• One or more J2EE modules

• A J2EE application deployment descriptor

Creation of a J2EE application is a two-step process. First, application
component providers create EJB, Web, and application client modules. Second,
the application assembler packages these modules together to create a J2EE appli-

CHAPTER 7 PACKAGING AND DEPLOYMENT208

DEA2e.book Page 208 Friday, March 8, 2002 12:31 AM
cation module that is ready for deployment. This section discusses issues involved
in both of these steps.

All J2EE modules are independently deployable units. This enables compo-
nent providers to create independent units of functionality without having to
implement full-scale applications.

Figure 7.2 illustrates the various types of J2EE modules (EJB, Web, applica-
tion client, and application) and how they can be deployed. Although the figure
shows only an independently deployed EJB module (at the bottom of the figure),
all four types of J2EE modules can be deployed independently.

To assemble an application, an application assembler resolves dependencies
between components by creating links in the corresponding modules’ deployment
descriptors. Each component may have dependencies on other components within
the same archive, on components in different archives, or both. All such depen-
dencies must be resolved before deployment. For example, in the sample
application, the Web components in the WAR file need to refer to
ShoppingClientController, Catalog, Account, Order, and ShoppingCart enter-
prise beans in the EJB JAR file. The application assembler ensures that the
description of the enterprise beans in the WAR file matches their descriptions in
the EJB JAR file.

The J2EE specifications place a number of requirements on components and
deployment units, most of which are essential for proper component operation.
Yet component containers are not required to enforce many of these rules at run-
time. Application assemblers should run verifier tools (such as the one included
with the J2EE SDK) on assembled EAR files to verify that their contents are inter-
nally consistent. A verifier performs a number of static checks to ensure that the
deployment descriptor and the archive file contents are referentially valid and
conform to the EJB, servlet, and J2EE specifications. Common errors that a veri-
fier can identify include mandatory naming convention violations, missing excep-
tion declarations, missing deployment descriptor entries, unresolved external
component and resource references, name collisions, structural information that
conflicts with code, and inaccessible support classes and interfaces. In addition, a
vendor-supplied verifier can check the consistency of product-specific deployment
information. An intelligent verifier can guide a deployer through the process of
resolving these inconsistencies, provide contextual help, and even present sug-
gested solutions. While verification does not guarantee correct runtime behavior,
it can catch a wide class of errors before deployment.

PACKAGING J2EE APPLICATIONS 209

DEA2e.book Page 209 Friday, March 8, 2002 12:31 AM
Figure 7.2 J2EE Packages

The following sections discuss the different types of J2EE modules and give
some heuristic rules and practical tips on how best to package different component
types.

CHAPTER 7 PACKAGING AND DEPLOYMENT210

DEA2e.book Page 210 Friday, March 8, 2002 12:31 AM
7.3.1 EJB Modules

An EJB module is packaged and deployed as an EJB JAR file, a JAR file with a .jar

extension. It is the smallest deployable and usable unit of enterprise beans. An EJB
module contains:

• Java class files for the enterprise beans and their remote and home interfaces.
Each entity bean requires that the EJB module also contain the bean’s primary
key class.

• Java class files for any classes and interfaces that the enterprise bean code
depends on that are not included with the J2EE platform. This may include
superclasses and superinterfaces, and the transitive closure of classes and in-
terfaces used as method parameters, results, and exceptions.

• An EJB deployment descriptor that provides both the structural and applica-
tion assembly information for the enterprise beans in the EJB module. The ap-
plication assembly information is optional and is typically included only with
assembled applications.

An EAR file differs from a standard JAR file in one key aspect: It includes a
deployment descriptor (called META-INF/ejb-jar.xml) that contains meta-
information about one or more enterprise beans.

In addition to the EJB JAR file for server-side use, an EJB JAR file producer
should create a client JAR file containing all class files that a client program needs
to access the enterprise beans contained in the EJB JAR file. Server-side compo-
nent implementation classes are not included in a client JAR file.

A class may be included in an EJB JAR file or client JAR file either by direct
inclusion of a class file, or by external reference to some other JAR file in the
same J2EE application.

7.3.2 EJB Module Packaging Guidelines

These guidelines cover how to group EJB components into useful modules and
provide pointers on packaging EJB modules.

7.3.2.1 Packaging Components into EJB Modules

A typical enterprise application contains many enterprise beans. Some of these
enterprise beans may be off-the-shelf components, while others may use third-party

PACKAGING J2EE APPLICATIONS 211

DEA2e.book Page 211 Friday, March 8, 2002 12:31 AM
libraries. The application assembler, therefore, must choose from the following
packaging options:

1. Package each enterprise bean for an application in its own EJB module. In this
approach, each enterprise bean has its own deployment descriptor and is pack-
aged in one EJB module along with its dependent classes. One advantage of
this approach is that it maximizes reusability of each enterprise bean by leaving
the application assembler free to pick and choose among these EJB modules to
compose additional J2EE applications. This option is recommended if your en-
terprise beans are each highly reusable. In such a case, the application assem-
blers will be able to reuse precisely those enterprise beans that they wish to
reuse, and no more.

2. Package all enterprise beans for an application in one EJB module. In this ap-
proach, all enterprise beans and their dependent classes are packaged together
in one EJB module. This approach is the simplest to implement. The applica-
tion assembler does not have to specify references to the enterprise beans
present in this EJB module as unresolved. This makes the job of application
assemblers easier. Application assemblers who only wish to use a subset of the
enterprise beans in the EJB module will still be able to do so, but may end up
with a bloated application. The deployer in this case may have to deploy super-
fluous enterprise beans.

3. Package all related (closely-coupled) enterprise beans for an application in one
EJB module. In this approach, all off-the-shelf components are used as is (that
is, in their own EJB modules). All in-house enterprise beans are grouped based
on their functional nature and put in one EJB module. For example, all enter-
prise beans related to account management can be put in one EJB module.

The third option is more modular and thus is recommended for most J2EE
applications. It strikes the right balance between maximum reusability (option 1)
and maximum simplicity (option 2). It promotes the black-box use of third-party
components, which is especially important in the case where those components
are digitally signed (although this is not a requirement of the J2EE platform).
Another value of the third option arises when a J2EE server deploys each EJB
module on a separate Java virtual machine for load balancing. In such cases, the
third option is most efficient since it groups closely-coupled enterprise beans
together, allowing many remote calls to be optimized to local calls. Another
advantage of option 3 is that it promotes reusability at the functional level rather
than at the enterprise bean level. For example, making a single Account enterprise

CHAPTER 7 PACKAGING AND DEPLOYMENT212

DEA2e.book Page 212 Friday, March 8, 2002 12:31 AM
bean reusable is more difficult than providing a reusable set of classes that provide
account management functionality collectively. Logical grouping also makes
sense from a tool point of view. A deployment or assembly tool may show the EJB
module as a group under a single icon. The following discussions provide guide-
lines on various ways to group enterprise beans.

7.3.2.1.1 Grouping by Related Functionality

A group of enterprise beans that is packaged into the same EJB module may not
easily be separated without knowing significant implementation details of each
enterprise bean. To reuse one bean from an EJB module, you must generally deploy
the entire module, including beans that you don’t use. It thus makes good sense to
package together a group of enterprise beans only if they will be commonly
deployed and used together.

All utility classes used by a bean may be packaged into the EJB module of
that bean. But redundant copies of utility classes increase the virtual machine size
of most J2EE implementations and may cause potential conflicts during upgrades.
Packaging related beans together reduces the number of copies of utility classes in
memory. For these reasons, it is recommended that utility classes used by only
one bean be packaged within the same EJB JAR file as that bean. Utility classes
that are shared between modules should be packaged into utility JAR files and
accessed referentially by their clients.

Grouping related beans in functional packages makes components easier to
use with development tools. J2EE application assembly tools commonly display
EJB modules in a palette of reusable components. Tools also typically visually
group together enterprise beans from the same EJB module. For example, when
server-side components related to accounting are grouped in a single code library
or EJB module, they show up as accounting components in the development user
interface.

7.3.2.1.2 Grouping Interrelated Beans

Enterprise beans can call one another at runtime, and one enterprise bean can dele-
gate some of its functionality to another. Though some J2EE servers will support
highly efficient cross-application dependencies, enterprise beans that depend on one
another should be grouped together in the same JAR file for both organizational and
performance reasons. In particular, all local beans that refer to one another should be
packaged in the same JAR file.

PACKAGING J2EE APPLICATIONS 213

DEA2e.book Page 213 Friday, March 8, 2002 12:31 AM
Where beans call one another, an EJB module may be delivered preassem-
bled, with all the enterprise bean cross-references resolved within the same unit.
This makes the tasks of both the assembler and the deployer much easier. Locat-
ing an appropriate accounting bean for use by a teller bean across a number of
servers may prove tedious, despite the best efforts and user interface wizardry of
the authors of a J2EE deployment tool. Where one bean delegates to another,
many servers will partition deployed EJB modules across different process and
even machine boundaries. A bean that makes frequent calls to another bean in a
separate address space can cause performance problems.

7.3.2.1.3 Grouping for Circular References

When two enterprise beans refer to each other, the result is a circular dependency.
Neither bean can function without the other, and so neither is reusable without the
other. In some cases redesign may eliminate these dependencies. When circular ref-
erences are necessary, you should also package the components together in the same
EJB module to ensure reusability.

7.3.2.1.4 Grouping with Common Security Profiles

While each EJB module allows a number of abstract security roles to be specified,
enterprise beans are often written with a discrete set of users in mind. Enterprise
beans that have the same security profile should be grouped together to keep secu-
rity role names consistent.

7.3.2.2 Local Interfaces in the JNDI Namespace

Many EJB implementations expose enterprise bean home interfaces at defined,
vendor-specific places in the Java Naming and Directory Interface (JNDI)
namespace. A vendor-specific auxiliary deployment descriptor then usually binds
the component’s ejb-name (a component’s application-global symbolic name) to its
JNDI name (the name of the actual component).

But because there is no need for remote access to local interfaces, local home
interfaces need not be exposed in the global JNDI namespace. While the compo-
nent may look up local home interfaces using JNDI, and receive valid results, the
container is not required to expose local beans anywhere in the JNDI namespace.
Instead, the container implements all JNDI lookups of local interfaces, returning
an appropriate object on request.

CHAPTER 7 PACKAGING AND DEPLOYMENT214

DEA2e.book Page 214 Friday, March 8, 2002 12:31 AM
7.3.2.3 EJB Module Deployment Recommendations

This section provides a few minor defensive deployment recommendations for EJB
modules.

Enterprise bean classes may have public methods that aren’t declared in the
bean’s home and component interfaces. Deployment descriptors should not indi-
cate transaction or security attributes for such methods. An EJB container cannot
provide transactional behavior or enforce security constraints on such methods,
because it can interpose only on public component or home interface method
invocations.

Occasionally the primary key class for an entity bean using container-
managed persistence will be either undefined or unknown to the component pro-
vider. In such cases, set the prim-key-class deployment descriptor element for
the entity bean to java.lang.Object.

Some entity beans simply wrap a layer of functionality around existing enter-
prise data, managing and updating that data with container-managed persistence.
Deployers should be certain that undeploying such beans does not cause the table
representing the beans to be dropped, unless that behavior is what is desired. Like-
wise, the same component may be used in multiple places in an application; for
example, ContactInfo for both Customer and Supplier components. When such
beans use container-managed persistence, the deployer should consider whether
all instances of the component should be stored in one table or multiple tables and
configure the persistence behavior accordingly. A deployer can typically control
these features by using vendor-specific deployment information (see Section
7.5.2.1 on page 245).

7.3.3 Web Modules

A Web module is packaged and deployed as a Web archive (WAR) file, a JAR file
with a .war extension. It is the smallest deployable and usable unit of Web
resources. A Web module contains:

• Java class files for the servlets and the classes that they depend on, optionally
packaged as a library JAR file

• JSP pages and their helper Java classes

• Static documents (for example, HTML, images, sound files, and so on)

PACKAGING J2EE APPLICATIONS 215

DEA2e.book Page 215 Friday, March 8, 2002 12:31 AM
• Applets and their class files

• A Web deployment descriptor

Unlike other deployment unit types, a WAR file usually cannot be loaded by a
classloader, because its internal directory structure differs from that of a loadable
JAR file (see Section 7.3.4.2 on page 216). Like other module types, a WAR file
may be deployed independently as a Web application or packaged in an EAR file
and deployed as a J2EE application.

7.3.4 Packaging Components into Web Modules

The Web module is the smallest indivisible unit of Web resources that an application
component provider supplies to the application assembler. This section contains
guidelines for how to package Web-tier components into Web modules.

7.3.4.1 Request Path Elements

Understanding how Web application components map into a server address space
requires an understanding of the structure of a request Uniform Resource Identifier
(URI). The URI representing a request to a Web component is called a request path.
After the protocol and hostname, a request URI has the following components:

• The context path locates the Web application in the Web server’s namespace
at deployment time. It can be thought of as the path to the “root directory” of
a Web application (called the context root), relative to the root of the Web serv-
er namespace. A context path is always either empty (meaning that the root of
the Web application is the root of the Web server namespace) or it both begins
with a slash and does not end with one.

• The servlet path is the part of the URI that matched the servlet mapping for the
request. It appears directly after the context path and never begins with a slash.

• The path info is any part of the request URI that is not part of the context path
or the servlet path that follows the server path but precedes the query string.
The HTTP GET query string, for example, typically appears as path info. Path
info may be empty.

CHAPTER 7 PACKAGING AND DEPLOYMENT216

DEA2e.book Page 216 Friday, March 8, 2002 12:31 AM
For example, consider the following request URI:

http://localhost/webapps/sample_app/jsp/Login.jsp/foo?uid=123

If the servlet mapping pattern that matched this request is jsp/*.jsp, then the
context path is /webapps/sample_app, the servlet path is jsp/Login.jsp, and the
path info is foo. Except for URL encoding details, a valid request URI is always a
context path, followed by a servlet path, followed by path info.

The deployer maps the context root of a Web application into a Web server’s
namespace using vendor-specific tools. The servlet specification does not define a
mechanism for this mapping.

7.3.4.2 Web Application Directory Structure

The Java Servlet specification defines a mandatory directory structure for a Web
application deployment unit. This structure is defined in Section 9.4 of the Java
Servlet specification, version 2.3. The Web application directory structure applies to
the internal structure of a WAR file. The Java Servlet specification recommends, but

PACKAGING J2EE APPLICATIONS 217

DEA2e.book Page 217 Friday, March 8, 2002 12:31 AM
does not require, that this same structure also be used as a runtime representation.
Figure 7.3 shows this structure graphically.

Figure 7.3 Web Application Directory Structure

The root directory of the Web application is the context root, which is mapped
to the context path at deployment time. The context root contains the application’s
JSP pages, content, graphics, applet classes, and other files that the application
serves to clients. These files are shown on the right in Figure 7.3.

Also under the context root is the WEB-INF directory, which contains files that
are not intended to be served to clients. The WEB-INF directory has a specific struc-
ture, and has the following contents:

• The deployment descriptor file, called web.xml

• A directory called lib, which contains JAR files that will automatically be add-
ed to application components’ classpath at runtime. Third-party libraries often
reside in this directory.

CHAPTER 7 PACKAGING AND DEPLOYMENT218

DEA2e.book Page 218 Friday, March 8, 2002 12:31 AM
• A directory called classes, which contains any classes needed by the applica-
tion that are not in a JAR file. Such classes must be organized in directories by
package, as usual.

Both the context root and WEB-INF may contain other files and directories in
addition to those that are required. Files and directories in WEB-INF are accessible
to Web components such as servlets and JSP pages, but can never be accessed
directly by clients. Sensitive files, such as configuration files and security descrip-
tors, should reside in the WEB-INF directory to protect them from unauthorized
access by clients. Web-tier components may access these files using the methods
ServletContext.getResource or ServletContext.getResourceAsStream.

Because servlet classes, servlet filter classes, tag libraries, and server-side
utility classes are never served to clients, they should always reside either in JAR
files in WEB-INF/lib or as class files in WEB-INF/classes. The BluePrints best
practice for such classes is to package them into JAR files in WEB-INF/lib for ease
of management.

7.3.4.3 Hyperlinks within a Web Module

Hyperlinks in a Web application should reference pages or components within the
same module using relative, rather than absolute, paths. Using absolute URLs in
paths assumes a fixed context path. If the context path changes for some reason,
every absolute URL in the application will also need to be changed. For example, a
component or static page that references another page in the same module using
path ../help/purchasing.html will work correctly regardless of the value of the
context path. By contrast, a link that used path /myapp/help/purchasing.html in a
link would require changes if the context path were ever changed from /myapp to
some other value.

Legacy content may include absolute URLs. URLs for legacy content often
can be mapped into a Web application’s namespace using a Web server’s propri-
etary aliasing features.

7.3.4.4 Decoupling Application Components

Web components may directly invoke one another via HTTP, creating dependencies
between components and applications. To avoid these dependencies, components
that call one another should be packaged in the same Web module and deployed
together.

PACKAGING J2EE APPLICATIONS 219

DEA2e.book Page 219 Friday, March 8, 2002 12:31 AM
Sometimes calling components between applications is unavoidable. Unfortu-
nately, hard-coding a path to a component in another application makes the refer-
encing application dependent on the context path of the referenced application.
For example, if a servlet mapped to /apps/myStore/servlets/orderServlet

invokes a servlet at /apps/warehouseApp/servlets/checkInventory, then appli-
cation myStore requires that application warehouseApp be available at context path
/apps/warehouseApp. If that context path changes, application myStore will
require a code modification to operate properly.

Dependencies of a component on its environment should always be explicit.
The BluePrints best practice for accessing components between applications is to
externalize the dependency by using environment entries in the deployment
descriptor instead of hard-coding paths to external components. In the example
above, an application component provider could define an environment entry in
the Web application’s deployment descriptor, as shown in Code Example 7.3.

<env-entry>

<description>

Path to the warehouse checkInventory service

</description>

<env-entry-name>warehouseCheckInventory</env-entry-name>

<env-entry-value>

/apps/warehouseApp/servlets/checkInventory

</env-entry-value>

<env-entry-type>java.lang.String</env-entry-type>

</env-entry>

Code Example 7.3 Externalizing a Dependency between Applications

Any component of the myStore application could then access the inventory
service indirectly by looking up its path in the environment entry.

InitialContext ctx = new InitialContext();

String invPath = (String)ctx.lookup("java:comp/env/warehouseCheck-

Inventory");

// ... invoke servlet using invPath...

Code Example 7.4 Accessing Another Application Indirectly

CHAPTER 7 PACKAGING AND DEPLOYMENT220

DEA2e.book Page 220 Friday, March 8, 2002 12:31 AM
When the myStore application is deployed, a deployer ensures that the env-

entry-value for the environment entry corresponds to a valid path. The applica-
tion myStore accesses application inventoryApp indirectly through deployment
information, so the dependency can be managed without changes to application
code.

7.3.4.5 Cross-Linked Static Content

Cross-linked Web pages must be packaged in a single Web module to avoid broken
links. Moreover, cross-linked HTML Web pages are typically reusable as a bundle,
so it makes sense to package them together. As recommended in Section 7.3.4.3, the
best practice is to use relative paths where possible for static content.

One way to make absolute URLs independent of context path is to use JSP
pages with a custom action for linking. At runtime, the custom action can generate
an HTML a tag with an href attribute that includes the context path.

<%@ taglib uri="http://java.sun.com/j2ee/blueprints/sampletags"

prefix="newtag" %>

This hyperlink is portable: <newtag:alink href="/a/b/c.html">Link

Here</newtag:alink>

Code Example 7.5 Using A Custom Action for Context Path Independence

Code Example 7.5 is an example of a JSP page that uses a custom tag called
alink, which outputs an HTML a tag with the context path prepended to its href

attribute value.

public int doStartTag() {

HttpServletRequest req =

(HttpServletRequest)pageContext.getRequest();

String contextPath = req.getContextPath();

try {

pageContext.getOut().println(

"");

} catch (Exception e) { ... }

return EVAL_BODY_INCLUDE;

}

PACKAGING J2EE APPLICATIONS 221

DEA2e.book Page 221 Friday, March 8, 2002 12:31 AM
public int doEndTag() {

JspWriter out = pageContext.getOut();

try { pageContext.getOut().println("");

} catch (Exception e) { ... }

return EVAL_PAGE;

}

}

Code Example 7.6 Tag Handler for Context Path-Independent Hyperlinks

Method doStartTag in Code Example 7.6 builds a URL from the context path
from the pageContext and the value of the alink tag’s href attribute. It outputs an
HTML a tag with href set to the constructed URL. Method doEndTag simply
closes the a tag. Code Example 7.7 shows the result of serving the JSP page.

This hyperlink is portable:

Link Here

Code Example 7.7 Result of JSP Page

The string /the/context/path in Code Example 7.7 is the context path
inserted by the custom action’s tag handler class ALink. Small to medium amounts
of Web content that do not change often can easily be converted to JSP pages that
manage the context path portably.

7.3.4.6 Logical Grouping of Functionality

A Web module that has a clearly defined purpose is easier to reuse in different sce-
narios than one with less well-defined overall behavior. For example, a well-
designed Web module concerned purely with inventory management can be reused
in many e-commerce applications that need inventory management capability. Such
a module would be ideal for adding a Web-based interface for inventory manage-
ment to the sample application.

CHAPTER 7 PACKAGING AND DEPLOYMENT222

DEA2e.book Page 222 Friday, March 8, 2002 12:31 AM
7.3.4.7 Utility Libraries

In general, it is good practice to group utility classes into libraries, include those
libraries in an application EAR file, and access them by reference from Web-tier
components. This technique avoids unnecessary code duplication in the deployed
application. All such libraries in a Web component deployment unit must be in the
directory WEB-INF/lib. The J2EE 1.3 Specification section J2EE.8.2 explains how
to access classes from JAR files in a J2EE application.

7.3.4.8 Accessing EJB Components from Web Components

When a Web component uses enterprise beans, package the EJB component’s client
EJB jar in the Web archive’s WEB-INF/lib directory. Putting the client EJB jar in
this directory places the files in that JAR in the Web container’s classpath. Avoid
mixing Web components and EJB components in the same JAR file, because doing
so makes reuse impossible. Instead, package each Web application that provides a
specific service in an individual WAR file, then create J2EE application EAR files
by combining Web modules (WAR files) with EJB client JAR files.

When packaging, keep in mind that Web components that use local interfaces
must reside within the same J2EE application EAR file as the enterprise beans that
implement those interfaces.

7.3.5 Application Client Modules

Application client modules are packaged in JAR files with a .jar extension. Appli-
cation client modules contain:

• Java classes that implement the client

• An application client deployment descriptor

An application client uses a client JAR file created by the EJB JAR file pro-
ducer. The client JAR file consists of all the class files that a client program needs
to access the enterprise beans in an EJB module.

DEPLOYMENT DESCRIPTORS 223

DEA2e.book Page 223 Friday, March 8, 2002 12:31 AM
7.3.6 Resource Adapter Modules

A Java Connector is packaged and deployed as a resource adapter archive (RAR)
file, a JAR file with a .rar extension. It is the smallest deployable and usable unit of
a Java Connector. A resource adapter module contains:

• Java class files for the classes and interfaces that implement both the Connec-
tor architecture contracts and the resource adapter itself, packaged as one or
more JAR files

• Resource adapter utility classes

• Platform-dependent, native support libraries for the resource adapter

• Help files and documentation

• A resource adapter deployment descriptor

A resource adapter module requires a native support library compatible with each
platform it supports to implement the platform-specific parts of the resource adapter.
Note also that the support classes and interfaces for a resource adapter must be
packaged as a JAR file within the RAR file. See the J2EE Connector Architecture
Specification for details.

7.4 Deployment Descriptors

Deployment descriptors describe the contents of deployment units and configure
components and applications to their environment. They also externalize the rela-
tionships between components, so those relationships can be managed without
writing or changing program code. Deployment tools usually automatically gener-
ate deployment descriptors, so you do not have to edit and manage them directly.

There are five types of deployment descriptors, each of which corresponds to
a type of deployment unit:

• EJB deployment descriptors are defined in the Enterprise JavaBeans specifica-
tion.

• Web deployment descriptors are defined in the Java Servlet specification.

• Application and application client deployment descriptors are both defined in
the J2EE platform specification.

CHAPTER 7 PACKAGING AND DEPLOYMENT224

DEA2e.book Page 224 Friday, March 8, 2002 12:31 AM
• Resource adapter deployment descriptors for Java Connectors are defined by
the J2EE Connector architecture specification.

Each deployment descriptor type is defined in its corresponding specification
as an XML Document Type Definition (DTD).

Deployment descriptors contain information used by a component’s container
and also contain information that the component can access directly by way of the
JNDI. The JNDI is a standard interface to an enterprise object name service.

7.4.1 J2EE Naming Environment

J2EE containers provide their components with a naming environment, which the
component uses to look up client components, resources, and configuration infor-
mation by name.

A component’s deployment descriptor both specifies and resolves the explicit
dependencies between the component and its environment. A component provider
must declare any names a component uses in the component’s deployment
descriptor. An application assembler and/or deployer resolves each name by
setting its value in a deployment descriptor. At runtime, a component instance
looks up the resource or configuration information using a JNDI naming context
provided by the container.

The JNDI naming context is the component’s API for accessing the naming
environment. To avoid collision with names of other enterprise resources in JNDI,
and to avoid portability problems, all names in a J2EE application should begin
with the string java:comp/env. Because all instances of a particular application
component share naming environment entries, components may not change values
in the naming context.

The naming context serves two general purposes: It provides parameters for
component behavior and it decouples components from resources and from each
other.

7.4.1.0.1 Parameterized Component Behavior

When a component is written in terms of parameters in the naming environment, its
behavior can be changed externally instead of by changing code. A component pro-
vider can write component code whose behavior depends on the value of an environ-
ment entry, which is a named value defined by the component provider in the
component’s deployment descriptor. The assembler and/or deployer customizes the
component’s behavior by setting the environment entry’s value.

DEPLOYMENT DESCRIPTORS 225

DEA2e.book Page 225 Friday, March 8, 2002 12:31 AM
An example of a component customized by an environment entry appears in
Section 7.4.2.1.1.

Using environment entries to create configurable components is a BluePrints
best practice. Parameterized components are more flexible than those that require
code changes to modify behavior.

7.4.1.0.2 Decoupling Components and Resources

The naming environment’s second purpose is to provide components with access to
other components and resources by name, instead of directly. Decoupling compo-
nents from one another provides two major benefits. First, a component’s imple-
mentation can change with no impact on components referring to it, as long as the
referenced component’s public interface does not change. Second, because compo-
nent instances are always accessed through a home interface rather than created by
direct construction, the container can interpose on method calls and manage the
component instance life cycle.

Users in different roles each use the naming environment in a different way.
The component provider writes code that looks up components and resources by
name in the naming environment, and declares usage of that name in the referenc-
ing component’s deployment descriptor. The assembler and/or deployer config-
ures the name to correspond to an object in the target environment, binding the
name to a component or resource.

For examples of decoupling component code from other components, see
Section 7.4.2.1.2. An example of decoupling component code from resources
appears in Section 7.4.2.1.3.

The J2EE platform specification requires that components access one another
and all external resources by way of the naming environment instead of loading
component and connection factory classes directly. Decoupling components from
resources and from each other lets the container make efficient decisions about
how components access one another. Decoupling components from their
resources provides deployment flexibility because each resource’s implementation
can be changed with no changes to component code.

7.4.2 Specifying Deployment Descriptor Elements

This section describes how to define specific deployment descriptor elements. It
begins by describing elements common to all component types, and then covers ele-
ments specific to enterprise beans and Web components.

CHAPTER 7 PACKAGING AND DEPLOYMENT226

DEA2e.book Page 226 Friday, March 8, 2002 12:31 AM
7.4.2.1 Common Elements

There are deployment descriptor elements common across the different J2EE com-
ponent types. These include environment entries, references to enterprise beans, ref-
erences to connection factories, references to resources in the environment, and
security-related elements.

7.4.2.1.1 Declaring Environment Entries

Environment entries allow customization of a component during deployment or
assembly without the need to access or change the component’s source code.

Customization requires cooperation between developer roles. A component pro-
vider writes component code whose behavior depends on the value of an environ-
ment entry, then defines the environment entry name and type in the component’s
deployment descriptor. An application assembler or deployer sets the environment
entry’s value to configure component behavior without changing the source code.
An application assembler may set some environment entries to configure compo-
nents for an application. A deployer may change values previously assigned by
component providers and/or application assemblers to configure the application to
its environment. The deployer must ensure that the values of all the environment
entries declared by a component are set to meaningful values. The application
component provider or application assembler may include a <description>

element in each environment entry to help the deployer with this task. Description
elements also commonly appear as help text in deployment tools.

Environment entries are declared with the env-entry element. Code Example
7.8 uses an environment entry to determine whether to send confirmation e-mail
when an order is processed. Code Example 7.9 shows how to set the value of the
environment entry.

public static boolean getSendConfirmationMail() {

boolean boolVal = false;

try {

InitialContext ic = new InitialContext();

Boolean bool = (Boolean)

ic.lookup(

"java:comp/env/ejb/CRMmail/SendConfirmationMail");

if (bool != null) {

boolVal = bool.booleanValue();

}

} catch (NamingException ne) {

DEPLOYMENT DESCRIPTORS 227

DEA2e.book Page 227 Friday, March 8, 2002 12:31 AM
...

}

return boolVal;

}

Code Example 7.8 Looking up a Naming Environment Entry

<env-entry>

<description>

If true, customer receives confirmation e-mail

when an order is received

</description>

<env-entry-name>CRMmail/sendConfirmationMail</env-entry-name>

<env-entry-type>java.lang.Boolean</env-entry-type>

<env-entry-value>false</env-entry-value>

</env-entry>

Code Example 7.9 Environment Entry Element

7.4.2.1.2 Declaring and Resolving References to Enterprise Beans

J2EE components look up enterprise bean home interface references by name using
JNDI. The deployment descriptors of both the referencing and referenced beans link
the two beans together.

A component (an enterprise bean or Web-tier component) looks up an enter-
prise bean with JNDI using a logical name, which is the referencing component’s
local name for the reference. The application component provider indicates the
lookup dependency by declaring all logical names used by a component in that
component’s deployment descriptor. Each enterprise bean in the application has
an ejb-name, which is a global identifying name assigned by the application
assembler. The application assembler resolves lookup dependencies by mapping
logical names to ejb-names in the referencing component’s deployment
descriptor.

Code Example 7.10 through Code Example 7.12, taken from the sample
application, illustrate how deployment descriptors link together a reference from a
component to the referenced bean’s home interface. Figure 7.4 graphically dem-
onstrates the relationships between these code samples.

CHAPTER 7 PACKAGING AND DEPLOYMENT228

DEA2e.book Page 228 Friday, March 8, 2002 12:31 AM
In Code Example 7.10, ShoppingClientControllerEJB performs a JNDI
lookup of logical name java:comp/env/ejb/cart. (In other words, it looks up
cart in the ejb subcontext of the environment naming context java:comp/env.

)

Figure 7.4 An Enterprise Bean Reference Resolves to a Home Interface

Code Example 7.11 shows part of the deployment descriptor for the referenc-
ing bean (ShoppingClientControllerEJB) that resolves the lookup of ejb/cart.
The component provider declares and names an enterprise bean reference, using
an ejb-ref-name element within an ejb-ref element. The reference’s logical
name is ejb/cart (relative to java:comp/env). The application assembler resolves
the lookup dependency by adding an ejb-link element to the ejb-ref element,
binding that lookup to the ejb-name TheCart.

Code Example 7.12 is an excerpt from the ShoppingCart bean’s deployment
descriptor. A session element declares the enterprise bean, and an ejb-name

element within the session element defines the bean’s ejb-name (TheCart).
Among other things, the session element declares the bean’s home interface
class.

Figure 7.4 shows a direct mapping from a home interface name to the actual
home interface; in J2EE implementations, the map from an ejb-name to the actual
component is vendor-specific. For example, the J2EE reference implementation
maps the ejb-name to the JNDI name of the bean’s actual home interface in a sep-

DEPLOYMENT DESCRIPTORS 229

DEA2e.book Page 229 Friday, March 8, 2002 12:31 AM
arate XML file containing vendor-specific deployment information. See Section
7.5.2.1 on page 245 for an example and additional explanation.

An application assembler is usually the role that chooses ejb-names and binds
them to logical names (with ejb-link), because the application assembler usually
handles tying components together into applications. The deployer must ensure
that all enterprise bean ejb-ref references are resolved (using ejb-link) to valid
ejb-name elements in the referenced bean’s deployment descriptor. Deployment
verification tools can check that all such references are consistent.

public class ShoppingClientControllerEJB implements SessionBean {

public ShoppingCart getShoppingCart() {

if (cart == null) {

try {

ShoppingCartHome cartHome =

EJBUtil.getShoppingCartHome();

cart = cartHome.create();

} catch (CreateException ce) {

...

}

}

return cart;

}

}

public static ShoppingCartHome getShoppingCartHome() {

try {

InitialContext initial = new InitialContext();

Object objref = initial.lookup("java:comp/env/ejb/cart");

return (ShoppingCartHome) PortableRemoteObject.

narrow(objref, ShoppingCartHome.class);

} catch (NamingException ne) {

throw new GeneralFailureException(ne);

}

}

Code Example 7.10 Looking Up a Home Interface by a Logical Name

CHAPTER 7 PACKAGING AND DEPLOYMENT230

DEA2e.book Page 230 Friday, March 8, 2002 12:31 AM
<session>

<ejb-name>TheShoppingClientController</ejb-name>

<home>com.sun.estore.control.ejb.

ShoppingClientControllerHome</home>

...

<ejb-ref>

<ejb-ref-name>ejb/cart</ejb-ref-name>

<ejb-link>TheCart</ejb-link>

<ejb-ref-type>Session</ejb-ref-type>

<home>com.sun.blueprints.cart.ejb.ShoppingCartHome</home>

<remote>com.sun.blueprints.cart.ejb.ShoppingCart</remote>

</ejb-ref>

...

</session>

Code Example 7.11 Declaring and Resolving an Enterprise Bean Reference

<session>

<display-name>TheCart</display-name>

<ejb-name>TheCart</ejb-name>

<home>com.sun.blueprints.cart.ejb.ShoppingCartHome</home>

<remote>com.sun.blueprints.cart.ejb.ShoppingCart</remote>

<ejb-class>com.sun.blueprints.cart.ejb.ShoppingCartEJB</ejb-

class>

<session-type>Stateful</session-type>

<transaction-type>Container</transaction-type>

</session>

Code Example 7.12 Defining the Referenced Bean’s ejb-name

While this mechanism may at first seem complicated, it provides the required
late binding between application components. The referencing bean’s deployment
descriptor both declares an explicitly named dependency of the bean on its envi-
ronment and resolves that dependency by providing the ejb-name of the refer-
enced bean. The referenced bean’s deployment descriptor defines the global ejb-
name that serves as the reference target.

DEPLOYMENT DESCRIPTORS 231

DEA2e.book Page 231 Friday, March 8, 2002 12:31 AM
An enterprise bean that is a target of ejb-link can be in the same EJB module
or in another EJB module within the same J2EE application. The target enterprise
bean must be type-compatible with the declared enterprise bean reference. This
means that the target enterprise bean must be of the type indicated in the ejb-ref-

type element and that the home and remote elements of the target enterprise bean
must be type-compatible with the home and remote elements declared in the enter-
prise bean reference.

Always define all external resource references in a component’s deployment
descriptor. Even if your platform implementation indicates the JNDI name for a
resource, the container is required by the specification to provide access only if
the resource reference is declared in the deployment descriptor. Accessing JNDI
objects without declaring them as external references may work for some imple-
mentations, but such behavior is not portable, and is not guaranteed to work prop-
erly. This advice also applies to environment resource references and EJB
references (see the next section), and to all J2EE module types.

7.4.2.1.3 Declaring References to Connection Factories

A connection factory is an object that creates connections to a resource manager.
For example, an object that implements the javax.sql.DataSource interface is a
connection factory for java.sql.Connection objects, which are connections to
database management systems.

Declaration and resolution of connection factory references is similar to dec-
laration and resolution of enterprise beans. A component provider declares a
lookup of a connection factory using a resource-ref element in the referencing
component’s deployment descriptor and gives the reference a logical name (that
is, the name by which the component looks up the connection factory) using a
res-ref-name element. This allows the component module consumer (that is,
application assembler or deployer) to discover all the connection factory refer-
ences used by the component. The component provider also indicates the type of
the connection factory, not the type of connection the factory produces. For exam-
ple, a JDBC connection factory’s type is DataSource, not Connection.

The deployer must bind the connection factory references to the actual
resource factories configured in the target environment. The details of how to
accomplish this binding are specific to the implementation. For example, in the
J2EE reference implementation, a deployer uses the JNDI LinkRef mechanism to
create a symbolic link to the actual JNDI name of the connection factory, which is
defined by the container. The deployer must also provide any additional configu-

CHAPTER 7 PACKAGING AND DEPLOYMENT232

DEA2e.book Page 232 Friday, March 8, 2002 12:31 AM
ration information that the resource manager needs to open and manage the
resource.

Code Example 7.13 illustrates the mail connection factory reference in the
entry for the Mailer enterprise bean.

<session>

<display-name>TheMailer</display-name>

<ejb-name>TheMailer</ejb-name>

<home>com.sun.blueprints.mail.ejb.MailerHome</home>

<remote>com.sun.blueprints.mail.ejb.Mailer</remote>

...

<resource-ref>

<res-ref-name>mail/MailSession</res-ref-name>

<res-type>javax.mail.Session</res-type>

<res-auth>Container</res-auth>

</resource-ref>

</session>

Code Example 7.13 Connection Factory Reference Element

Note that the connection factory type must be compatible with the type
declared in the res-type element. The res-auth subelement of the resource-ref

element specifies whether resource sign on is managed by an application compo-
nent or by its container. See Section 6.4.5.1 on page 196 for more information on
resource sign on.

The Mailer enterprise bean calls MailHelper to open a mail session. Code
Example 7.14 contains the code from the MailHelper class that requests a mail
session object declared as java:comp/env/mail/MailSession in the JNDI context.

public void createAndSendMail(String to, String subject,

String htmlContents) {

try {

InitialContext ic = new InitialContext();

Session session = (Session) ic.

lookup("java:comp/env/mail/MailSession");

...

DEPLOYMENT DESCRIPTORS 233

DEA2e.book Page 233 Friday, March 8, 2002 12:31 AM
}

}

Code Example 7.14 Looking Up a Connection Factory

By default, enterprise beans in the same transaction context may share con-
nections to a resource. Where possible, it is good practice to allow the application
server to optimize efficiency by sharing connections. In some cases, sharing can
cause incorrect component behavior; for example, a connection may be session-
based, requiring sign on or maintaining state that might be interfered with by other
components. In these cases, turn off connection sharing by setting the connection
factory’s res-sharing-scope deployment descriptor element to Unshareable.

7.4.2.1.4 Declaring Resource Environment References

Resource environment references are like connection factory references, except that
the logical name resolves to the actual resource instead of resolving to a factory that
creates connections to the resource. An application component provider declares
references to resources in the environment using a resource-env-ref element in the
referencing component’s deployment descriptor. The application component pro-
vider defines the reference’s logical name (using resource-ref-env-name) and type
(using resource-ref-env-type).

The deployer binds the resource environment reference to the actual resource
in the container. As for connection factories, the mechanism for associating
resource environment references with actual resources is vendor-specific.

For example, the sample application includes a Web service that sends pur-
chase orders to suppliers based on incoming orders. Code Example 7.15, derived
from the sample application, shows code of a message-driven enterprise bean
looking up a message queue to which the component sends purchase orders.
Notice that the queue’s logical name is in JNDI subcontext java:comp/env/jms,
because the resource is a JMS Queue. Code Example 7.16 shows the part of the
message-driven bean’s deployment descriptor that declares and names the
resource environment reference. The actual runtime resolution of the resource ref-
erence is performed by the container in an implementation-specific way.

CHAPTER 7 PACKAGING AND DEPLOYMENT234

DEA2e.book Page 234 Friday, March 8, 2002 12:31 AM
String spqName = "ja-

va:comp/env/jms/SUPPLIER_PURCHASE_ORDER_QUEUE";

InitialContext ic = new InitialContext();

Queue supplierPoQueue = (Queue)ic.lookup(spqName);

Code Example 7.15 Looking Up a Resource Environment Reference

<message-driven>

<ejb-name>ORDER_APPROVAL_MDB_QUEUE</ejb-name>

...

<resource-env-ref>

<resource-env-ref-name>

jms/SUPPLIER_PURCHASE_ORDER_QUEUE

</resource-env-ref-name>

<resource-env-ref-type>

javax.jms.Queue

</resource-env-ref-type>

</resource-env-ref>

</message-driven>

Code Example 7.16 Declaring a Resource Environment Reference

7.4.2.1.5 Security Elements

An application component provider uses the security-role element to define
logical security roles that can be assumed by an authenticated principal. Code
Example 7.17 illustrates how the sample application defines the gold_customer

security role.

<security-role>

<role-name>gold_customer</role-name>

</security-role>

Code Example 7.17 Security Role Element

The security-role-ref element is used to link a role name used by the
method isCallerInRole with a security role. In the sample application, this

DEPLOYMENT DESCRIPTORS 235

DEA2e.book Page 235 Friday, March 8, 2002 12:31 AM
method is used by the Order entity bean to enforce business rules based on
whether the user is a preferred customer.

Code Example 7.18 and Code Example 7.19 illustrate how the security-

role-ref element establishes a link between the string GOLD_CUSTOMER used by
method isCallerInRole to the security role named gold_customer.

private int getBonusMiles() {

int miles = (totalPrice >= 100) ? 1000 : 500;

if (context.isCallerInRole("GOLD_CUSTOMER"))

miles += 1000;

return miles;

}

Code Example 7.18 Referencing a Security Role Name

<security-role-ref>

<role-name>GOLD_CUSTOMER</role-name>

<role-link>gold_customer</role-link>

</security-role-ref>

Code Example 7.19 Linking a Security Role Name and Security Role

An application component provider declaratively controls access to an enter-
prise bean’s methods by specifying the method-permission element in the enter-
prise bean’s deployment descriptor. The component provider defines this element
to list the set of methods that can be accessed by each security role. The authoriza-
tion scenario described in Section 9.3.8 on page 302 illustrates how method-

permission elements affect the execution of enterprise bean methods.

7.4.2.2 Enterprise Bean Elements

Enterprise beans have component-specific deployment descriptor elements for per-
sistence and transaction control.

7.4.2.2.1 Transaction Elements

Transaction elements are deployment descriptor elements that control an enterprise
bean’s transactional behavior. An enterprise bean requires a transaction element that

CHAPTER 7 PACKAGING AND DEPLOYMENT236

DEA2e.book Page 236 Friday, March 8, 2002 12:31 AM
indicates whether the bean uses container- or bean-managed transaction demarca-
tion. If transaction demarcation is container-managed, the bean’s methods also have
transaction attributes.

An application assembler must ensure that transaction attributes are defined
for all methods of the deployed enterprise beans that use container-managed trans-
action demarcation. If the transaction attributes have not been assigned by the
application component provider, they must be assigned by the application assem-
bler. Code Example 7.20 illustrates how transaction attributes are declared for an
Account entity bean. The container-transaction element for Account specifies
that when method changeContactInformation is invoked, it must be within the
scope of a transaction. See Section 8.6.3 on page 264 for detailed information
about the values that a transaction attribute can take.

<container-transaction>

<method>

<ejb-name>TheAccount</ejb-name>

<method-intf>Remote</method-intf>

<method-name>changeContactInformation</method-name>

<method-params>

<method-param>

com.sun.blueprints.util.ContactInformation

</method-param>

</method-params>

</method>

<trans-attribute>Required</trans-attribute>

</container-transaction>

Code Example 7.20 Transaction Elements

7.4.2.2.2 Persistence Elements

The application component provider must specify whether a bean manages its own
persistence or uses container-managed persistence. When a bean uses container-
managed persistence, the application component provider must specify the fields of
the bean. Code Example 7.21 illustrates how the Account entity bean uses the per-

sistence-type element to declare that it will manage its own persistence.

<entity>

<description>Account of a shopper</description>

DEPLOYMENT DESCRIPTORS 237

DEA2e.book Page 237 Friday, March 8, 2002 12:31 AM
<display-name>TheAccount</display-name>

...

<persistence-type>Bean</persistence-type>

</entity>

Code Example 7.21 Persistence Element

7.4.2.3 Web Component Elements

Some of the more commonly used Web component deployment descriptor elements
are discussed in this section.

7.4.2.3.1 Servlet

The one deployment descriptor element that must be specified for a Web component
is the servlet element, shown in Code Example 7.22. This element associates a
logical identifier (servlet-name) with the name of the servlet class or the JSP file
associated with the component.

<servlet>

<servlet-name>webTierEntryPoint</servlet-name>

<display-name>HTML Client Front Controller Servlet

</display-name>

<description>no description</description>

<servlet-class>

com.sun.j2ee.blueprints.waf.controller.web.MainServlet

</servlet-class>

</servlet>

Code Example 7.22 Servlet Element

7.4.2.3.2 Servlet Mapping

The servlet-mapping element specifies the URLs that the Web component is
aliased to handle. While the element is called servlet-mapping, it is used to map
URLs to both servlets and JSP pages. Code Example 7.23 aliases Main servlet to
handle all requests to the URL namespace *.do.

CHAPTER 7 PACKAGING AND DEPLOYMENT238

DEA2e.book Page 238 Friday, March 8, 2002 12:31 AM
<servlet-mapping>

<servlet-name>webTierEntryPoint</servlet-name>

<url-pattern>/control/*</url-pattern>

</servlet-mapping>

Code Example 7.23 Servlet Mapping Element

7.4.2.3.3 Error Pages

The error-page element can be used to invoke an error page automatically when
the Web application throws a Java language exception. Code Example 7.24 shows
how to enable the J2EE server to send errorpage.jsp to the browser client if the
Web application ever throws any exception of the type java.lang.Exception or its
subclass.

<error-page>

<exception-type>java.lang.Exception</exception-type>

<location>/errorpage.jsp</location>

</error-page>

Code Example 7.24 Error Page Element

7.4.2.3.4 Form-Based Authentication Configuration

Form-based authentication is the preferred mechanism for authenticating applica-
tion users in the J2EE platform. Code Example 7.25 illustrates how to configure a
Web application to activate form-based authentication when the Web server receives
a request for the URL /control/placeorder. The security-constraint element
specifies that the URL /control/placeorder is a protected resource. The login-

config element specifies that the URL formbasedloginscreen will be displayed
when an unauthenticated user tries to access /control/placeorder. This page
contains an HTML form that prompts for a user name and password.

<security-constraint>

<web-resource-collection>

<web-resource-name>MySecureBit0</web-resource-name>

<description>no description</description>

<url-pattern>/control/placeorder</url-pattern>

<http-method>POST</http-method>

DEPLOYMENT DESCRIPTORS 239

DEA2e.book Page 239 Friday, March 8, 2002 12:31 AM
<http-method>GET</http-method>

</web-resource-collection>

<auth-constraint>

<description>no description</description>

<role-name>gold_customer</role-name>

<role-name>customer</role-name>

</auth-constraint>

<user-data-constraint>

<description>no description</description>

<transport-guarantee>NONE</transport-guarantee>

</user-data-constraint>

</security-constraint>

<login-config>

<auth-method>FORM</auth-method>

<realm-name>default</realm-name>

<form-login-config>

<form-login-page>formbasedloginscreen</form-login-page>

<form-error-page>formbasedloginerrorscreen

</form-error-page>

</form-login-config>

</login-config>

Code Example 7.25 Form-Based Authentication Configuration

7.4.3 Naming Convention Recommendations

Logical names are the names a component uses to refer to external objects. For
example, Code Example 7.10 (on page 230) looks up a home interface using a
logical name, java:comp/env/ejb/cart, and Code Example 7.11, using ejb-link,
binds that logical name to the ejb-name TheCart. Code Example 7.12 declares the
shopping cart object and gives it the physical name TheCart.

Each component has its own scope for the logical names it uses, so compo-
nents can use the same logical name to refer to different objects, and the refer-
ences will not collide. For example, although a Customer bean and a Supplier

bean might both look up an associated enterprise bean by the logical name
ejb/Address, each would access a different bean if each reference were bound
(with ejb-link) to a different element. Each time a component performs a lookup

CHAPTER 7 PACKAGING AND DEPLOYMENT240

DEA2e.book Page 240 Friday, March 8, 2002 12:31 AM
using the same name, the same object (or an equivalent one) is returned from the
naming context.

There are few requirements or restrictions on the internal structure of logical
names. Conventions for logical names help to organize references of different
types and make it more clear to an application assembler or deployer just what
sort of object she is dealing with.

7.4.3.0.1 Naming Environment Entries

The name of an environment entry should use the subcontext of the component it
configures. Code Example 7.26 from the sample application shows that the environ-
ment entry CatalogDAOClass appears in JNDI subcontext
java:comp/env/ejb/catalog, because this environment entry is specific to the
Catalog enterprise bean. Environment entries that configure an application globally,
or configure more than one component, may be placed in the java:comp/env sub-
context.

<env-entry>

<env-entry-name>ejb/catalog/CatalogDAOClass</env-entry-name>

<env-entry-type>java.lang.String</env-entry-type>

<env-entry-value>...</env-entry-value>

</env-entry>

Code Example 7.26 Environment Entry Declared for Enterprise Bean

7.4.3.0.2 Naming Enterprise Bean References

JNDI subcontext java:comp/env/ejb should be used for the logical names of all
EJB references. An additional subcontext level that groups tightly-coupled beans
may also be useful. Code Example 7.27 illustrates how the sample application uses
the JNDI subcontext java:comp/env/ejb/controller to group the shopping client
controller and the shopping facade beans, since these two beans are intimately
related. Grouping related classes into subcontexts can clarify for the application
assembler or deployer which enterprise beans work with or depend on each other.

<ejb-local-ref>

<ejb-ref-name>

ejb/controller/ShoppingClientController

 </ejb-ref-name>

DEPLOYMENT DESCRIPTORS 241

DEA2e.book Page 241 Friday, March 8, 2002 12:31 AM
<ejb-ref-type>Session</ejb-ref-type>

<local-home>...</local-home>

...

<ejb-link>TheShoppingClientController</ejb-link>

</ejb-local-ref>

<ejb-local-ref>

<ejb-ref-name>ejb/controller/ClientFacade</ejb-ref-name>

<ejb-ref-type>Session</ejb-ref-type>

<local-home>...</local-home>

...

<ejb-link>TheShoppingClientFacade</ejb-link>

</ejb-local-ref>

Code Example 7.27 Declaring and Naming EJB References

7.4.3.0.3 Naming Connection Factory References

The J2EE platform specification version 1.3 provides several guidelines for logical
names for connection factory resource references. Consistent logical naming groups
resources by resource manager type, making it clear to the application assembler or
deployer what sort of resource needs to be configured for each reference. Table 7.1
shows recommended JNDI subcontexts for common J2EE resource connection
factory types.

7.4.3.0.4 Naming Environment Resource References

Logical names for environment resource references should follow the same conven-
tions as for connection factories. For example, JMS message destinations should be
placed in the java:comp/env/jms subcontext.

CHAPTER 7 PACKAGING AND DEPLOYMENT242

DEA2e.book Page 242 Friday, March 8, 2002 12:31 AM
7.5 Deployment Tools

Although deployment can be configured directly by editing XML text files, the
process is handled best by specialized tools such as the DeployTool provided with
the J2EE SDK. This section describes the actions that a deployment tool performs
and outlines requirements on packaging and development tools. The recommenda-
tions in the remainder of this chapter are intended primarily for J2EE product
providers who distribute packaging and deployment tools with their products.
Developers can better understand what to expect from such tools by understanding
the recommendations.

7.5.1 Deployment Tool Actions

This section discusses what happens behind the scenes when a J2EE application is
deployed on a J2EE server. Since many J2EE applications may be deployed on an
individual J2EE server, J2EE servers typically register each application under a dif-
ferent identifier. The deployment of a J2EE application involves three different types
of components: enterprise beans, Web components, and application clients.

For each enterprise bean, the J2EE server must perform the following tasks:

1. Generate and compile the stubs and skeletons for the enterprise bean.

2. Set up the security environment to host the enterprise bean according to its de-

Table 7.1 Recommended JNDI Subcontexts for Connection Factories

Resource
Manager

Type
Connection Factory Type(s) JNDI Subcontext

JDBC javax.sql.DataSource java:comp/env/jdbc

JMS javax.jms.TopicConnectionFactory
javax.jms.QueueConnectionFactory

java:comp/env/jms

JavaMail javax.mail.Session java:comp/env/mail

URL java.net.URL java:comp/env/url

Connector javax.resource.cci.ConnectionFac-
tory

java:comp/env/eis

DEPLOYMENT TOOLS 243

DEA2e.book Page 243 Friday, March 8, 2002 12:31 AM
ployment descriptor, enforcing the application’s security policy on access to
the enterprise bean’s methods.

3. Set up the transaction environment for the enterprise bean according to its de-
ployment descriptor. This is needed so that the calls to the methods of the en-
terprise bean happen in the correct transaction context.

4. Register the enterprise bean, its environment properties, resources references,
and so on, in the JNDI namespace.

5. Create database tables for enterprise beans that use container-managed persis-
tence.

For each Web component, the J2EE server must perform the following tasks:

1. Transfer the contents of the Web component underneath the context root of the
server. Since there may be more than one J2EE application installed, the server
may install each in a specific directory. For example, the J2EE SDK installs
each application under a context root specified at deployment time. The sample
application is installed in the petstore directory.

2. Initialize the security environment of the application. This involves configur-
ing the form-based login mechanism, role-to-principal mappings, and so on.

3. Register environment properties, resource references, and EJB references in
the JNDI namespace.

4. Set up the environment for the Web application. For example, it performs the
alias mappings and configures the servlet context parameters.

5. Precompile JSP pages as specified in the deployment descriptor.

The tool used to deploy an application client, and the mechanism used to install
the application client, are not specified by the J2EE specification. Very sophisticated
J2EE products may allow the application client to be deployed on a J2EE server and
automatically made available to some set of (usually intranet) clients. Other J2EE
products may require the J2EE application bundle containing the application client
to be manually deployed and installed on each client machine. Another approach
would be for the deployment tool on the J2EE server to produce an installation
package that could be taken to each client to install the application client. Java Web
Start technology is recommended to manage installation and automatic upgrading of
application client programs.

CHAPTER 7 PACKAGING AND DEPLOYMENT244

DEA2e.book Page 244 Friday, March 8, 2002 12:31 AM
7.5.2 Deployment Tool Requirements

Deployment tools have different requirements during development and during pro-
duction deployment. A developer’s deployment needs are different than the needs of
a deployer installing a production application on a mission-critical system.

When an application is being developed, it must be deployed before it can be
tested. Developers want fast response times and the ability to undeploy, redeploy,
and partially deploy applications easily and quickly. They will often make minor
changes to Java classes, and hence will not want to go through a lengthy deploy-
ment process over and over again. They also need extensive debugging facilities.
Many Java development environments will contain a J2EE server optimized for
these purposes.

When deploying a production application on a mission-critical server, the pri-
orities are robustness, performance, and stability. Often, to avoid downtime and
unforeseen problems, the application is first brought up on parallel systems. The
foremost consideration of the deployer is to be able to connect all legacy systems
to the newly developed application. A deployer may also want detailed logging of
the deployment process.

The following sections explore packaging and deployment issues from a tools
perspective and point out differences, if any, in light of the two different deploy-
ment times.

7.5.2.1 Vendor-Specific Deployment Information

The J2EE platform specification defines deployment unit requirements for each of
the four J2EE module types and for a J2EE application itself. Each specification
defines how the archive file must be structured to operate correctly with a J2EE
deployment tool. In addition to application code and a deployment descriptor, an
application requires a certain amount of additional vendor- or environment-specific
binding information. For example, when the J2EE reference implementation
receives an application EAR file from a deployer, it also needs the following infor-
mation:

• A JNDI name for each enterprise bean’s home interface

• A mapping of the application’s abstract security roles to user and group names

• JNDI lookup names and account information for all databases

• JavaMail session configuration information

DEPLOYMENT TOOLS 245

DEA2e.book Page 245 Friday, March 8, 2002 12:31 AM
Note that these issues arise only at deployment time—they in no way affect
the ability to deploy an application on servers from different J2EE product
providers.

Each vendor implements these vendor-specific bindings in a different way.
For example, the J2EE reference implementation represents vendor-specific infor-
mation as a separate XML document (called sun-j2ee-ri.xml) within the appli-
cation archive. Code Example 7.28 is an excerpt derived from the sample
application’s vendor-specific deployment information.

<j2ee-ri-specific-information>

<server-name>localhost</server-name>

<enterprise-beans>

<module-name>customerEjb.jar</module-name>

<unique-id>0</unique-id>

...

<ejb>

<ejb-name>AccountEJB</ejb-name>

<jndi-name>ejb/local/customer/account</jndi-name>

<ejb-ref>

 <ejb-ref-name>ejb/local/creditcard</ejb-ref-name>

<jndi-name>

localejbs/BluePrints_Petstore/CreditCardEJB3

</jndi-name>

</ejb-ref>

...

</j2ee-ri-specific-information>

Code Example 7.28 Vendor-Specific Deployment Information

The J2EE platform specification does not specify how an ejb-name maps to a
home interface. Instead, the specification leaves this detail to the platform imple-
menter’s discretion, which provides the implementer with more design flexibility
in the platform implementation.

The J2EE reference implementation provides one example of how a J2EE
platform implementation might map an ejb-name to a home interface. A deployer
using the J2EE reference implementation provides vendor-specific deployment
information that maps each ejb-name to a jndi-name, which is the name of the
actual bean home interface in the naming environment, as configured in the EJB

CHAPTER 7 PACKAGING AND DEPLOYMENT246

DEA2e.book Page 246 Friday, March 8, 2002 12:31 AM
container. As shown in Code Example 7.28, the J2EE reference implementation’s
vendor-specific deployment information binds the ejb-name AccountEJB to a cor-
responding jndi-name, localejbs/BluePrints_Petstore/CreditCardEJB3. This
separation of standard deployment information from vendor-specific information
ensures the reusability of deployment descriptors across vendor platforms and
implementation versions while enabling vendor-specific bindings and extensions.

Vendors may find it useful to use XML attribute IDs to link vendor-specific
information to components and entities within a J2EE application. The J2EE ref-
erence implementation links standard and vendor-specific deployment descriptor
information by component name.

The J2EE specifications define the internal structure of deployment units, and
the content and structure of deployment descriptors. BluePrints recommends the
following practices for deployment tools and descriptors:

• Deployment tools should follow the J2EE specifications closely, so that each
deployment unit may be opened and used by the deployment tools of as many
vendors as possible.

• Deployment descriptors written by deployment tools should always conform
to the DTDs specified in the J2EE specifications.

• Vendor-specific deployment information should be kept outside of the deploy-
ment descriptor, but within the deployment unit itself, perhaps in an auxiliary
XML such as the one the J2EE reference implementation uses.

• A deployment tool should preserve, not remove, any files that it does not rec-
ognize within a deployment unit, because such files might be deployment
information from some other tool.

• Likewise, tools should always preserve optional deployment descriptor
entries, instead of throwing away entries they don’t use or recognize.

• Finally, vendor-specific deployment information should have reasonable fall-
back default values to make deployment as simple as possible.

7.5.2.2 Single Point of Entry for Deployment

A high-end mission-critical server often consists of multiple physical servers. Often
the number of Web containers is greater than the number of EJB containers. In such
cases, the deployer shouldn’t have to install applications individually on each
machine. The deployment process should have a single point of entry—either a

DEPLOYMENT TOOLS 247

DEA2e.book Page 247 Friday, March 8, 2002 12:31 AM
stand-alone deployment tool or the deployment component of a J2EE server. For
example, the J2EE SDK deployment tool provides a single point of entry to the
J2EE server. This central component then takes care of distributing appropriate
components on both the Web and the EJB containers.

This approach has the following benefits:

• It simplifies the deployment process, because the deployer has to interact with
only one deployment tool. The deployer also clearly understands when deploy-
ment is complete. The tool also determines which components are required to
be deployed on each machine.

• It provides a place for centralized logging and auditing.

• It provides better fault tolerance. Since the deployment tool has complete con-
trol over all application components on all servers, it can detect server failures
and perform failovers. It can also detect when a server comes back up and
redeploy the application to bring it in sync. An added advantage is that the
deployer does not have to worry about load-balancing, because the runtime en-
vironment handles it automatically.

• It simplifies undeployment and upgrading.

7.5.2.3 Remotely Accessible Deployment

Deployers often need to deploy multiple applications on multiple J2EE servers. To
handle such scenarios more easily, the deployment tool should be remotely accessi-
ble as either a Web-based or client-server application. The deployment tool bundled
with the J2EE SDK takes a client-server approach, using RMI-IIOP to communicate
with the administration back-end of the J2EE server. The tool can access and deploy
applications on multiple J2EE servers.

7.5.2.4 Undeployment Capability

In development-time deployment, undeployment capability is critical to quickly
update new application components. In a high-end implementation, it isn’t accept-
able to restart the server to add or remove new software applications. High-end
servers will therefore likely support dynamic deployment and undeployment. Low-
end J2EE servers may not need to support this capability.

Another useful development feature of high-end J2EE products is incremental
deployment and undeployment. For many J2EE servers, deploying a J2EE appli-

CHAPTER 7 PACKAGING AND DEPLOYMENT248

DEA2e.book Page 248 Friday, March 8, 2002 12:31 AM
cation may be an atomic (and slow) process. Waiting for an entire application to
deploy when an application component changes can slow the development
process unacceptably. Servers that allow deployment and undeployment capabil-
ity of only parts of an application, and that incorporate this feature into their tools,
greatly accelerate the development cycle.

7.5.2.5 JNDI Namespace Management

Deployers need to bind external references in a J2EE application to entities in their
environment. Examples of such references include databases and enterprise beans.
Since binding happens through the JNDI namespace, container providers need to
provide tools to create and manage the JNDI namespace. These tools also need to
control access to the JNDI namespace according to the security policy of their envi-
ronment.

7.5.2.6 Name Collision Management

Application assemblers may use third-party enterprise beans, without control over
the names used for such enterprise beans. As a result, name collisions are bound to
occur. Packaging tools should automatically detect and handle such name collisions
by adjusting names through the ejb-link element of the bean’s deployment
descriptors.

7.5.2.7 Deployment Descriptor Versioning

The lifetime of many enterprise applications may be measured in years and even
decades. An important goal of the J2EE platform is to provide compatibility even
when systems and application components are upgraded. To maintain deployment
descriptor portability both across platforms and across implementation versions,
separate standard and vendor-specific deployment information. Packaging and
deployment tools should follow the versioning conventions described in the J2EE,
EJB, and servlet specifications.

7.6 Summary

The J2EE platform provides facilities to simplify the deployment process. It uses
JAR files as the standard package for components and applications, and XML-based
deployment descriptors for platform configuration and component customization.

REFERENCES AND RESOURCES 249

DEA2e.book Page 249 Friday, March 8, 2002 12:31 AM
Tools that read and write application deployment descriptors also simplify deploy-
ment, because they present users with an intuitive view of application structure and
component capabilities.

The J2EE packaging and deployment process involves three J2EE roles:
application component provider, application assembler, and deployer.

Application component providers create components, package them into
modules, and write their deployment descriptors. They design components with
business logic that is customizable via deployment descriptors, instead of by mod-
ifications to the source code. When packaging components into modules, applica-
tion component providers need to balance between the competing goals of
reusability and simplicity.

Application assemblers resolve dependencies between deployment descriptor
elements in different modules and assemble modules into larger deployment units.
Deployers customize deployment descriptor elements for the application’s
deployment environment and install deployment units. The deployer must ensure
that the values of all environment entries declared by an enterprise bean are mean-
ingful.

The packaging and deployment process is handled best by specialized tools.
While both component providers and deployers need to deploy applications, their
deployment needs are different. Component providers want fast response times,
and the ability to undeploy, redeploy, and partially deploy applications easily and
quickly. Deployers in a production environment require robustness, performance,
and stability. Deployment tools need to address both sets of requirements while
supporting such J2EE platform goals as portability and backwards compatibility.

7.7 References and Resources

The following references are for those readers interested in more information on
packaging and deployment.

• The JavaTM 2 Platform, Enterprise Edition, Specification. J2EE Enterprise
Team. Copyright 2000, Sun Microsystems, Inc.

• Enterprise JavaBeansTM Specification. Copyright 2001, Sun Microsystems,
Inc.

• The J2EE Connector Architecture Specification. Copyright 2001, Sun Micro-
systems, Inc.

CHAPTER 7 PACKAGING AND DEPLOYMENT250

DEA2e.book Page 250 Friday, March 8, 2002 12:31 AM
• The JavaTM Servlet 2.3 Specification. Copyright 2001, Sun Microsystems, Inc.
<http://jcp.org/aboutJava/communityprocess/first/jsr053/

index.html>

• JavaTM Web Start Web site <http://java.sun.com/products/javaweb-

start/developers.html>

DEA2e.book Page 251 Friday, March 8, 2002 12:31 AM
C H A P T E R 8

Transaction Management

by Tony Ng

TRANSACTION management is a mechanism for simplifying the development of
distributed multiuser enterprise applications. It is also one of the standard services
offered by the J2EE platform. By enforcing strict rules on an application’s ability to
access and update data, transaction management ensures data integrity. A transac-
tional system ensures that a unit of work either fully completes or has no effect at
all. Transaction management frees an application programmer from dealing with the
complex issues of data access, including synchronized updates, failure recovery, and
multiuser programming.

This chapter begins with a general overview of transactional concepts and
J2EE platform support for transaction management. Then it describes the JavaTM

Transaction API (JTA), the interface used by the J2EE platform to manage and
coordinate transactions. Finally, the chapter describes the transactional models
available to each type of J2EE component and to enterprise information systems.

8.1 Transactional Concepts

A transaction is a logical unit of work that either modifies some state, performs a set
of operations, or both. An individual transaction may involve multiple data and
logical operations, but these operations always occur as an indivisible atomic unit,
or they do not occur at all. For example, enrolling a patient in a health care plan
may involve first acquiring release forms from the patient, verifying the patient’s
employment, checking her health and insurance history against remote data
sources, and so on. All of the activities described can be subtasks of a single trans-
251

CHAPTER 8 TRANSACTION MANAGEMENT252

DEA2e.book Page 252 Friday, March 8, 2002 12:31 AM
action, because failure of any one of these subtasks should cause the entire transac-
tion to fail.

This section provides a brief introduction to basic concepts in conventional
and distributed transactional systems. See “References and Resources” on
page 277 for references to in-depth treatment of these topics.

8.1.1 ACID Transaction Properties

Enterprise transactions share the properties of atomicity, consistency, isolation, and
durability, denoted by the acronym ACID. These properties are necessary to ensure
safe data sharing.

Atomicity means that a transaction is considered complete if and only if all of
its operations were performed successfully. If any operation in a transaction fails,
the transaction fails. In the health care example described above, a patient can be
enrolled only if all required procedures complete successfully, so enrollment is
atomic.

Consistency means that a transaction must transition data from one consistent
state to another, preserving the data’s semantic and referential integrity. For exam-
ple, if every health care policy in a database requires both a patient covered by the
policy and a plan describing the coverage, every transaction in the health insur-
ance application must enforce this consistency rule. While applications should
always preserve data consistency, many databases provide ways to specify integ-
rity and value constraints so that transactions that attempt to violate consistency
will automatically fail.

Isolation means that any changes made to data by a transaction are invisible to
other concurrent transactions until the transaction commits. Isolation requires that
several concurrent transactions must produce the same results in the data as those
same transactions executed serially, in some (unspecified) order. In the health plan
enrollment example, isolation ensures that updates made to a patient record will
not be globally visible until those updates are committed.

Durability means that committed updates are permanent. Failures that occur
after a commit cause no loss of data. Durability also implies that data for all com-
mitted transactions can be recovered after a system or media failure.

An ACID transaction ensures that persistent data always conform to their
schema, that a series of operations can assume a stable set of inputs and working
data, and that persistent data changes are recoverable after system failure.

TRANSACTIONAL CONCEPTS 253

DEA2e.book Page 253 Friday, March 8, 2002 12:31 AM
8.1.2 Transaction Participants

An application that uses transactions is called a transactional application. In a J2EE
application, a transactional application may consist of multiple servlets, JSP pages,
and enterprise beans. A resource manager is an external system accessed by an
application. A resource manager provides and enforces the ACID transaction prop-
erties for specific data and operations. Examples of resource managers include a
relational database (which support persistent storage of relational data), an EIS
system (managing transactional, external functionality and data), and the Java
Message Service (JMS) provider (which manages transactional message delivery).
A transactional application accesses a resource manager through a transactional
resource object. For example, a JDBC java.sql.Connection object is used to
access a relational database. A resource adapter is a system library that makes the
API of a resource manager available to an application server. A Connector is a
resource adapter that has an API conforming to the Java Connector architecture, the
standard architecture for integrating J2EE applications with EISes.

8.1.3 Transaction Demarcation

Transactional programs must be able to start and end transactions, and be able to
indicate whether data changes are to be made permanent or discarded. Indicating
transaction boundaries for a program is called transaction demarcation.

A program starts a transaction by executing a begin operation. The program
may then read or modify data within the scope of the new active transaction.
When the program is ready to make its data changes permanent, it executes a
commit operation, causing the transaction to persist any data modified or created
during the active state. Successful completion of the commit operation results in a
permanent change to the transactional resource. If a commit operation fails (for
example, due to inadequate resources or data consistency violations), the resource
manager executes a rollback, discarding any changes made since the transaction
began. An application may also explicitly request a rollback during an active
transaction.

8.1.4 Distributed Transactions

Distributed enterprise systems often need to access and update multiple transac-
tional resources in order to accomplish some business goal. Consider, for example, a
travel agency application. Creating a typical business travel itinerary with a con-
firmed and paid plane ticket requires successful completion of user authentication,

CHAPTER 8 TRANSACTION MANAGEMENT254

DEA2e.book Page 254 Friday, March 8, 2002 12:31 AM
credit card processing, and flight reservation, as well as local creation of the itiner-
ary itself. Such a transaction, involving independent, cooperating transactional sys-
tems, is called a distributed transaction.

Distributed transactions are more complex than non-distributed transactions
because of latency, potential failure of one or more resource managers, and
interoperability concerns. On a network, a failed transaction can be difficult to dis-
tinguish from one that is merely slow. Resource managers that do not “know”
about each other cannot coordinate transactions by themselves. A transactional
application could itself handle rollbacks and commits for multiple distributed
resources, but only at the cost of a great deal of complex, non-reusable logic.

The most common solution to the problem of coordinating distributed trans-
actions is to introduce a third participant, called a transaction manager, into the
design. The transaction manager acts as a mediator between applications and the
multiple resources the applications use. Figure 8.1 shows the three participants in
a distributed transaction: the transactional application, the resource manager, and
the transaction manager, which coordinates the transactions of multiple resource
managers, providing the application with ACID transactions across multiple
resources. In many cases, the transaction manager uses the X/Open XA protocol
to communicate with multiple resource managers. In the J2EE platform, the XA
protocol is encapsulated by the JTA XAResource interface. Please refer to “Refer-
ences and Resources” on page 277 for more information on the X/Open XA pro-
tocol.

At any time during a distributed transaction, the transaction manager main-
tains an association between each transaction (which has a unique global ID),
application threads, and connections to the resource managers. For example, a
transaction manager may associate a single transaction ID with a thread of an
application, an SQL connection that has updated a table, a JMS provider waiting
to transmit a message, and a resource adapter or Connector executing an external
business function. A transaction context is the association of a transaction with an
application component or a resource manager. The transparent forwarding of a
transaction context from one component to another component or from a compo-
nent to a resource manager is called transaction context propagation.

TRANSACTIONAL CONCEPTS 255

DEA2e.book Page 255 Friday, March 8, 2002 12:31 AM
Figure 8.1 Distributed Transaction Participants

8.1.5 Two-Phase Commit Protocol

Resource managers that do not “know” about one another can’t cooperate directly in
distributed transactions; instead, the transaction manager controls the transaction,
indicating to each resource manager whether and when to commit or roll back,
based on the global state of the transaction. A transaction manager coordinates
transactions between resource managers using a two-phase commit protocol. The
two-phase commit protocol provides the ACID properties of transactions across
multiple resources.

In the first phase of two-phase commit, the transaction manager tells each
resource to “prepare” to commit; that is, to perform all operations for a commit
and be ready either to make the changes permanent or to undo all changes. Each
resource manager responds, indicating whether or not the prepare operation suc-
ceeded. In the second phase, if all prepare operations succeed, the transaction
manager tells all resource managers to commit their changes; otherwise, it tells
them all to roll back and indicates transaction failure to the application.

A particular resource manager may participate in multiple simultaneous dis-
tributed transactions. The ACID properties apply for all resource managers
involved in a particular distributed transaction, as well as for all pending transac-
tions within a particular resource manager.

CHAPTER 8 TRANSACTION MANAGEMENT256

DEA2e.book Page 256 Friday, March 8, 2002 12:31 AM
8.2 J2EE Platform Transactions

Enterprise applications require safe, reliable, recoverable data access, so support for
transactions is an essential element of the J2EE architecture. The J2EE platform
supports a combination of servlets and JSP pages accessing multiple enterprise
beans within a single transaction. Each component may acquire multiple connec-
tions to multiple resource managers.

The J2EE platform supports both programmatic and declarative transaction
demarcation. The component provider can programmatically demarcate transac-
tion boundaries in the component code with the Java Transaction API. Enterprise
beans support declarative transaction demarcation, in which the enterprise bean
container automatically starts and completes transactions based on configuration
information in the components’ deployment descriptor. In both cases, the J2EE
platform assumes the burden of implementing transaction management.

J2EE transaction management is transparent to component and application
code. A J2EE application server implements the necessary low-level transaction
protocols, such as interactions between a transaction manager and resource man-
agers, transaction context propagation, and distributed two-phase commit proto-
col. The J2EE platform requires only support for so-called “flat” transactions,
which cannot have any child (nested) transactions.

An application can perform distributed transactions because a transaction
manager propagates the transaction context across multiple resource managers.
Transaction managers can also cooperate to propagate transaction context across
J2EE server boundaries. Consider a large retail store chain. The transaction
manager for a store’s application server may also interoperate with the transaction
managers for other stores within the same enterprise, permitting customers to pay
for an item at one location and have it delivered from another. Such transactional
capabilities pave the way for a high level of integration across the enterprise.

The next few sections provide examples of these transactional scenarios,
which involve multiple distributed transaction participants.

8.2.1 Accessing Multiple Resources within a Transaction

As of version 1.3 of the J2EE platform, a J2EE product is required to support access
within a single transaction to:

J2EE PLATFORM TRANSACTIONS 257

DEA2e.book Page 257 Friday, March 8, 2002 12:31 AM
• A single JDBC database (multiple connections to the same database are
allowed)

• A single Java Message Service (JMS) provider, and

• Multiple Enterprise Information Systems (EISs) through resource adapters
(Connectors) specifying the XATransaction transaction level

Please refer to Section 8.8 on page 273 for more on these three types of
resource managers.

Access to multiple JDBC databases within a single transaction is not required
by J2EE version 1.3, and neither is support for multiple JMS providers within a
transaction. Some product providers may add value to their product line by
including these extra, non-standard transactional capabilities. For example, the
J2EE reference implementation supports access to multiple JDBC databases in
one transaction through XA-capable JDBC drivers.

8.2.1.0.1 Example: Transactions across Multiple Resource Managers

The following scenario illustrates a J2EE transaction that spans multiple resource
managers. In Figure 8.2, a client invokes a method on enterprise bean X. Bean X

accesses database A using a JDBC connection. Then enterprise bean X calls a
method on another enterprise bean Y, which sends a JMS message to some other
system using a JMS provider. Enterprise bean Y then invokes a method on enter-
prise bean Z, which updates and returns some data from an external EIS system
using a resource adapter that implements the J2EE Connector architecture. The
transaction manager in the J2EE server coordinates activities with the three resource
managers. The server ensures that the database update by bean X, the message trans-
mission by bean Y, and the EIS operation performed by bean Z are either all commit-
ted, or all rolled back.

CHAPTER 8 TRANSACTION MANAGEMENT258

DEA2e.book Page 258 Friday, March 8, 2002 12:31 AM
Figure 8.2 A Database, a JMS Provider, and an EIS within a Single Transaction

An application component provider does not have to write extra code to
ensure consistent transactional behavior. Enterprise beans X, Y, and Z access their
resources using the JDBC API, JMS, and the J2EE Connector architecture,
respectively. Behind the scenes, the J2EE server’s transaction manager enlists the
connections to all three systems as part of the transaction. When the transaction
commits, the J2EE server and the resource managers perform a two-phase commit
to ensure atomic update of the two systems.

8.2.2 Transactions across Servers

J2EE products can distribute transactions across multiple application servers.

8.2.2.0.1 Example: Transactions across J2EE Servers

In Figure 8.3, a client invokes enterprise bean X, which updates data in enterprise
information system A, and then calls another enterprise bean Y that is hosted by a dif-

J2EE TRANSACTION TECHNOLOGIES 259

DEA2e.book Page 259 Friday, March 8, 2002 12:31 AM
ferent J2EE server. Enterprise bean Y performs read-write access to enterprise infor-
mation system B.

Figure 8.3 A Transaction Can Span Multiple J2EE Servers

When X invokes Y, the two J2EE servers cooperate to propagate the transaction
context from X to Y. This transaction context propagation is transparent to the
application code. At transaction commit time, the two J2EE servers use a distrib-
uted two-phase commit protocol to ensure that the two enterprise information
systems are updated within a single transaction.

8.3 J2EE Transaction Technologies

The Java Transaction API and the J2EE platform specifications define the overall
transactional behavior in the J2EE architecture. The JTA specification defines the
contracts between applications, application servers, resource managers, and transac-
tion manager. The J2EE platform specification defines the requirements for the
J2EE transaction management and runtime environment.

8.3.0.0.1 Java Transaction API (JTA)

JTA specifies standard Java interfaces between a transaction manager and the dis-
tributed transaction participants it coordinates: applications, application servers, and
resource managers. JTA defines interfaces that let applications, application servers,
and resource managers participate in transactions regardless of their
implementations.

CHAPTER 8 TRANSACTION MANAGEMENT260

DEA2e.book Page 260 Friday, March 8, 2002 12:31 AM
A JTA transaction is a transaction managed and coordinated by the J2EE plat-
form. A J2EE product is required to support JTA transactions as defined in the
J2EE specification. A JTA transaction can span multiple components and enter-
prise information systems. A transaction is propagated automatically between
components and to enterprise information systems accessed by components
within the transaction. For example, a JTA transaction may comprise a servlet or
JSP page accessing multiple enterprise beans, some of which access one or more
resource managers.

JTA transactions begin either explicitly in code or implicitly by an EJB server.
A component can explicitly begin a JTA transaction using interface javax.trans-

action.UserTransaction. An EJB container implicitly begins a JTA transaction
when a client accesses an enterprise bean that uses container-managed transaction
demarcation.

Most J2EE application component providers use only the JTA
UserTransaction interface, and then only when choosing to use bean-managed
transactions rather than container-managed transactions. An application compo-
nent provider uses the JTA UserTransaction interface to demarcate JTA transac-
tion boundaries in components. The JTA TransactionManager and XAResource

interfaces are low-level APIs between a J2EE server and enterprise information
system resource managers and are not intended to be used by applications.

The main benefit of using JTA transactions is the ability to combine multiple
components and enterprise information system accesses into one single transac-
tion with little programming effort. The J2EE platform propagates transactions
between multiple components and enterprise information systems with no addi-
tional programming effort. Enterprise beans using container-managed transaction
demarcation (See Section 8.6.2 on page 264) do not need to begin or commit
transactions programmatically, because the EJB container automatically handles
the demarcation.

JTA transactions are recommended when accessing EIS resources; see
Section 8.7.3 on page 269.

8.4 Client Tier Transactions

The J2EE platform does not require transaction support in applets and application
clients, though like distributed transactions, a J2EE product might choose to provide
this capability for added value. So, whether applets and application clients can
directly access a UserTransaction object depends on the capabilities provided by

WEB TIER TRANSACTION GUIDELINES 261

DEA2e.book Page 261 Friday, March 8, 2002 12:31 AM
the container. To ensure portability, applets and application clients should delegate
transactional work to enterprise beans, either directly or by way of the Web tier.

8.5 Web Tier Transaction Guidelines

Servlets and JSP pages in a two-tier application can access enterprise information
systems within the scope of a JTA transaction. Servlets and JSP pages support only
programmatic transaction demarcation. A servlet or JSP page can use JNDI to look
up a UserTransaction object (using the standard defined name
java:comp/UserTransaction), and then use the UserTransaction interface to
demarcate transactions.

Code Example 8.1 illustrates the use of the JTA UserTransaction interface to
demarcate transactions within a Servlet:

Context ic = new InitialContext();

UserTransaction ut =

(UserTransaction) ic.lookup("java:comp/UserTransaction");

ut.begin();

// access resources transactionally here

ut.commit();

Code Example 8.1 Web Component Using a JTA Transaction

Calling UserTransaction.begin associates the calling thread with a new
transaction context. Subsequent accesses of transactional resources such as JDBC
connections or resource adapter connections implicitly enlist those resources into
the transaction. The call to UserTransaction.commit commits the transaction,
transparently engaging the two-phase commit protocol if necessary.

A servlet or JSP page may start a transaction only in its service method. A
transaction that is started by a servlet or JSP page must be completed before the
service method returns; in other words, transactions may not span Web requests.
If the service method returns with a pending UserTransaction (that is, begin has
been called, but not commit or rollback), the container aborts the transaction and
rolls back all data updates. JTA transactions are not supported in servlet filters and
Web application event listeners.

CHAPTER 8 TRANSACTION MANAGEMENT262

DEA2e.book Page 262 Friday, March 8, 2002 12:31 AM
8.5.0.0.1 Web Tier Transaction Guidelines

In a multitier environment, data presentation and user interaction are the primary
responsibilities of servlets and JSP pages. Data presentation and user interaction are
usually not transactional operations. Because transactions tend to be associated with
business logic, database access and other transactional work should be handled by
transactional enterprise beans instead of by the JTA in the Web tier.

In designs that do not use enterprise beans, or where for some reason you
choose to use Web tier transactions, the following guidelines apply. JTA transac-
tions, threads, and transactional resources (for example, JDBC connections) have
many complex and subtle interactions. Web components should follow the guide-
lines stated in the transaction management chapter of the J2EE specification (ver-
sion 1.3, section J2EE.4.2):

• JTA transactions must be started and completed only from the thread in which
the service method is called. If the Web component creates additional threads
for any purpose, these threads must not attempt to start JTA transactions. These
additional threads will not be associated with any JTA transaction.

• Transactional resources such as JDBC connections acquired and released by
threads other than the service method thread should not be shared between
threads.

• Transactional resource objects should not be stored in static fields.

• Web components that implement SingleThreadModel may store references to
transactional resources in class instance fields. By definition, only one thread
can ever access an instance of a Web component implementing
SingleThreadModel; therefore, that instance can assume that fields referencing
any transactional resources will not be shared with any other thread.

• Web components that do not implement SingleThreadModel should not store
transactional resource objects in class instance fields. Transactional resource
objects for such components should be acquired and released within the same
invocation of the service method.

8.6 Enterprise JavaBeans Tier Transactions

Enterprise beans offer two types of transaction demarcation: bean-managed and
container-managed. In container-managed transaction demarcation, six different

ENTERPRISE JAVABEANS TIER TRANSACTIONS 263

DEA2e.book Page 263 Friday, March 8, 2002 12:31 AM
transaction attributes—Required, RequiresNew, NotSupported, Supports,
Mandatory, and Never—can be associated with an enterprise bean method. An
application component provider or assembler specifies the type of transaction
demarcation and transaction attributes for the methods of the enterprise beans in the
deployment descriptor.

This section discusses the types of transactions and the attributes of container-
managed transactions and presents guidelines for choosing among the available
options.

8.6.1 Bean-Managed Transaction Demarcation

With bean-managed transaction demarcation, an enterprise bean uses the
javax.transaction.UserTransaction interface to explicitly demarcate transaction
boundaries. Session beans and message-driven beans can choose to use bean-
managed demarcation; entity beans must always use container-managed transaction
demarcation.

Code Example 8.2 illustrates the use of the JTA UserTransaction interface to
demarcate transactions in an enterprise bean with bean-managed transaction
demarcation.

UserTransaction ut = ejbContext.getUserTransaction();

ut.begin();

// perform transactional work here

ut.commit();

Code Example 8.2 Enterprise Bean Using a JTA Transaction

The UserTransaction interface is used the same way in the EJB tier as in the
Web tier except that the reference to the interface is obtained by calling
EJBContext.getUserTransaction instead of by way of a JNDI lookup. As noted
in Section 8.5 on page 261, resource managers are implicitly enlisted into a trans-
action, if one is active, the first time they are accessed from the thread that started
the transaction. It is not necessary for Web components to explicitly demarcate
transactions of the resource managers.

CHAPTER 8 TRANSACTION MANAGEMENT264

DEA2e.book Page 264 Friday, March 8, 2002 12:31 AM
8.6.2 Container-Managed Transaction Demarcation

The EJB container manages transaction boundaries for enterprise beans that use
container-managed transaction demarcation. A transaction attribute for an enterprise
bean method determines that method’s transactional semantics, defining the behav-
ior the EJB container must provide when the method is called. Transaction attributes
are associated with enterprise bean methods in the bean’s deployment descriptor.
For example, if a method has a transaction attribute RequiresNew, the EJB container
begins a new JTA transaction every time this method is called and attempts to
commit the transaction before the method returns. The same transaction attribute
can be specified for all the methods of an enterprise bean or different attributes can
be specified for each method of a bean. Refer to Section 8.6.3 for more information
on transaction attributes.

Even in container-managed demarcation, an enterprise bean has some control
over the transaction. For example, an enterprise bean can choose to roll back a
transaction started by the container using the method setRollbackOnly on the
SessionContext, EntityContext and MessageDrivenContext object.

There are several benefits of using container-managed transaction demarca-
tion:

• The transaction behavior of an enterprise bean is specified declaratively
instead of programmatically. This frees the application component provider
from writing transaction demarcation code in the component.

• It is less error-prone because the container handles transaction demarcation
automatically.

• It is easier to compose multiple enterprise beans to perform a certain task with
specific transaction behavior. An application assembler that understands the
application can customize the transaction attributes in the deployment descrip-
tor without code modification.

8.6.3 Transaction Attributes

A transaction attribute is a value associated with a method of an enterprise bean that
uses container-managed transaction demarcation. A transaction attribute is defined
for an enterprise bean method in the bean’s deployment descriptor, usually by an
application component provider or application assembler. The transaction attribute
controls how the EJB container demarcates transactions of enterprise bean methods.
In most cases, all methods of an enterprise bean will have the same transaction

ENTERPRISE JAVABEANS TIER TRANSACTIONS 265

DEA2e.book Page 265 Friday, March 8, 2002 12:31 AM
attribute. For optimization purposes, it is possible to have different attributes for dif-
ferent methods. For example, an enterprise bean may have methods that do not need
to be transactional.

A transaction attribute must be specified for the methods in the component
interface of a session bean and for the methods in the component and home inter-
faces of an entity bean.

8.6.3.0.1 Required

If the transaction attribute is Required, the container ensures that the enterprise
bean’s method will always be invoked with a JTA transaction. If the calling client is
associated with a JTA transaction, the enterprise bean method will be invoked in the
same transaction context. However, if a client is not associated with a transaction,
the container will automatically begin a new transaction and try to commit the trans-
action when the method completes.

8.6.3.0.2 RequiresNew

If the transaction attribute is RequiresNew, the container always creates a new trans-
action before invoking the enterprise bean method and commits the transaction
when the method returns. If the calling client is associated with a transaction con-
text, the container suspends the association of the transaction context with the
current thread before starting the new transaction. When the method and the trans-
action complete, the container resumes the suspended transaction.

8.6.3.0.3 NotSupported

If the transaction attribute is NotSupported, the transactional context of the calling
client is not propagated to the enterprise bean. If a client calls with a transaction
context, the container suspends the client’s transaction association before invoking
the enterprise bean’s method. After the method completes, the container resumes the
suspended transaction association.

8.6.3.0.4 Supports

It the transaction attribute is Supports and the client is associated with a transaction
context, the context is propagated to the enterprise bean method, similar to the way
the container treats the Required case. If the client call is not associated with any
transaction context, the container behaves similarly to the NotSupported case. The
transaction context is not propagated to the enterprise bean method.

CHAPTER 8 TRANSACTION MANAGEMENT266

DEA2e.book Page 266 Friday, March 8, 2002 12:31 AM
8.6.3.0.5 Mandatory

The transaction attribute Mandatory requires the container to invoke a bean’s
method in a client’s transaction context. If the client is not associated with a transac-
tion context when calling this method, the container throws
javax.transaction.TransactionRequiredException if the client is a remote
client or javax.ejb.TransactionRequiredLocalException if the client is a local
client. If the calling client has a transaction context, the case is treated as Required

by the container.

8.6.3.0.6 Never

The transaction attribute Never requires that the enterprise bean method explicitly
not be called within a transaction context. If the client calls with a transaction con-
text, the container throws java.rmi.RemoteException if the client is a remote client
or javax.ejb.EJBException if the client is a local client. If the client is not associ-
ated with any transaction context, the container invokes the method without initiat-
ing a transaction.

8.6.4 Enterprise JavaBeans Tier Transaction Guidelines

As mentioned previously, the recommended way to manage transactions is through
container-managed demarcation. Declarative transaction management provides one
of the major benefits of the J2EE platform by freeing the application component
provider from the burden of managing transactions. Furthermore, the transaction
characteristics of an application can be changed without code modification by
switching the transaction attributes, making components useful in more contexts.
Transaction demarcation should be selected with great care by someone who under-
stands the application well. Bean-managed transaction demarcation is only for
advanced users who want fine-grain control over the transactional behavior of the
application.

8.6.4.1 Transaction Attributes Guidelines

Most enterprise beans perform transactional work (for example, accessing a JDBC
database). The default choice for a transaction attribute should be Required. Using
this attribute ensures that the methods of an enterprise bean are invoked within a
JTA transaction. In addition, enterprise beans with the Required transaction
attribute can be easily composed to perform work within the scope of a single JTA
transaction.

ENTERPRISE JAVABEANS TIER TRANSACTIONS 267

DEA2e.book Page 267 Friday, March 8, 2002 12:31 AM
Message-driven beans may use only the Required and NotSupported transac-
tion attributes. Entity beans that use EJB 2.0 container-managed persistence
should use only the Required, RequiresNew, or Mandatory transaction attributes
for most component and home interface methods.

The RequiresNew transaction attribute is useful when the bean method needs
to commit unconditionally, whether or not a transaction is already in progress. An
example of this requirement is a bean method that performs logging. This bean
method should be invoked with the RequiresNew transaction attribute so that
logging records are created even if the calling client’s transaction is rolled back.

The NotSupported transaction attribute can be used when the resource
manager responsible for the transaction is not supported by the J2EE product. For
example, if a bean method is invoking an operation on an enterprise resource plan-
ning system that is not integrated with the J2EE server, the server has no control
over that system’s transactions. In this case, the bean’s transaction attribute should
be set to NotSupported to clearly indicate that the enterprise resource planning
system is not accessed within a JTA transaction.

Using the transaction attribute Supports is not recommended. An enterprise
bean with this attribute would have transactional behavior that differed depending
on whether the caller is associated with a transaction context, possibly leading to a
violation of the ACID rules for transactions.

The transaction attributes Mandatory and Never can be used when it is neces-
sary to verify the transaction association of the calling client. These attributes may
make it more difficult to use the component inside an application because it
restricts the calling client’s transaction context.

8.6.4.2 Container-Managed Persistence Transaction Attributes Guidelines

As previously mentioned, entity beans that use EJB 2.0 container-managed persis-
tence can only use Required, RequiresNew, or Mandatory transaction attributes for
most business methods and methods on the home interface. Because accessing the
container-managed persistence (CMP) and container-managed relationship (CMR)
fields of an entity bean requires transactions, the Mandatory transaction attribute
should be used for all get and set methods of an entity bean’s CMP and CMR fields.
Use of the RequiresNew transaction attribute for get and set methods of CMR fields
is not recommended, because it is illegal to iterate through the same collection
object corresponding to a CMR field in different transactions.

CHAPTER 8 TRANSACTION MANAGEMENT268

DEA2e.book Page 268 Friday, March 8, 2002 12:31 AM
8.7 EIS Tier Transactions

Most enterprise information systems support some form of transactions. For exam-
ple, a typical JDBC database allows multiple SQL updates to be grouped in an
atomic transaction.

Components should always access an enterprise information system within
the scope of a transaction to guarantee the integrity and consistency of the under-
lying data. Such systems can be accessed within a JTA transaction or a resource
manager local transaction.

8.7.1 JTA Transactions

When an enterprise information system is accessed within the scope of a JTA trans-
action, any updates performed on the system will commit or roll back depending on
the outcome of the JTA transaction. Multiple connections to information systems
can be opened and all updates through the connections will be atomic if they are
performed within the scope of a JTA transaction. The J2EE server is responsible for
coordinating and propagating transactions between the server and the enterprise
information system.

If the J2EE product supports multiple enterprise information systems in one
transaction, a J2EE application can access and perform updates on multiple enter-
prise information systems atomically, without extra programming effort, by
grouping all updates within a JTA transaction. Code Example 8.3 illustrates this
use:

InitialContext ic = new InitialContext("java:comp/env");

DataSource db1 = (DataSource) ic.lookup("OrdersDB"); // JDBC

ConnectionFactory db2 =

(ConnectionFactory) ic.lookup("InventoryEIS"); // Connector CCI

java.sql.Connection con1 = db1.getConnection();

javax.resource.cci.Connection con2 = db2.getConnection();

UserTransaction ut = ejbContext.getUserTransaction();

ut.begin();

// perform updates to OrdersDB using connection con1

// perform updates to InventoryEIS using connection con2

ut.commit();

Code Example 8.3 Accessing Multiple Transactional Resources

EIS TIER TRANSACTIONS 269

DEA2e.book Page 269 Friday, March 8, 2002 12:31 AM
8.7.2 Resource Manager Local Transactions

A resource manager local transaction (or local transaction) is a transaction specific
to a particular enterprise information system connection. A local transaction is
managed by the underlying enterprise information system resource manager. The
J2EE platform usually does not have control of or knowledge about any local trans-
actions begun by components. Access to a transactional enterprise information
system is usually within a local transaction if no JTA transaction has been initiated.
For example, if a servlet accesses a JDBC database without starting a JTA transac-
tion, the database access will be within the scope of a local transaction, specific to
the database.

Local transactions may also be used when the enterprise information system
is not integrated using the Connector architecture. For example, if no Connector
resource adapter is available for an object-oriented database, a J2EE server cannot
propagate any JTA transactions to the object-oriented database, and any access
will be within local transactions. For this reason, applications should use the Con-
nector architecture to integrate enterprise information systems that are not
included as part of the J2EE platform.

8.7.3 EIS Tier Transaction Guidelines

Enterprise information systems such as databases should be accessed within the
scope of a JTA transaction. Transactional access guarantees data consistency and
integrity, and ensures that work performed by multiple components through multi-
ple enterprise information system connections is grouped as an atomic unit. It also
groups as an atomic unit work performed on one or more independent enterprise
information systems.

Where JTA transaction control is not possible, such as with resource manag-
ers that do not support the JTA, consider using resource manager local transac-
tions with compensating transactions (see the next section). Keep in mind that
each local transaction requires an explicit commit or rollback. In addition, compo-
nents using local transactions need extra logic to deal with individual enterprise
information system rollbacks or failures.

8.7.4 Compensating Transactions

A compensating transaction is a transaction or a group of operations that undoes
the effect of a previously committed transaction. A distributed transaction may
include both JTA transactions and resource manager local transactions, but local

CHAPTER 8 TRANSACTION MANAGEMENT270

DEA2e.book Page 270 Friday, March 8, 2002 12:31 AM
transactions require explicit management. JTA-enabled resource managers handle
rollback automatically by simply discarding any changes made since a transaction
began. But each resource manager local transaction requires a compensating
transaction that can undo the local transactions effects in case a rollback occurs.

Compensating transactions are useful if a component needs to access an enter-
prise information system that either does not support full JTA transactions or is
not supported by a particular J2EE product. The J2EE platform supports JTA
transactions for JDBC and JMS access. JTA transaction support for EIS access is
determined by the transaction level of the resource adapter (see Section 8.8.3 on
page 274). An XATransaction resource adapter automatically supports JTA trans-
actions.

A LocalTransaction resource adapter (see Section 8.8.3 on page 274)
accesses an EIS within the scope of a resource manager local transaction. Per-
forming atomic operations on multiple EISs can be challenging when some of
those systems do not participate in the JTA transaction. Compensating transac-
tions meet this challenge by providing programmatic “rollback” of operations
already committed by resource manager local transactions. Compensating trans-
actions must be manually coded into application logic; the JTA provides no stan-
dard way to handle them.

For example, suppose an application needs to perform an atomic operation
that involves updating two enterprise information systems: a database that sup-
ports JTA transactions and an enterprise resource planning system that does not.
The application would need to define a compensating transaction for the update to
the enterprise resource planning system. The approach is illustrated in Code
Example 8.4.

updateERPSystem();

try {

UserTransaction.begin();

updateJDBCDatabase();

UserTransaction.commit();

}

catch (RollbackException ex) {

undoUpdateERPSystem();

}

Code Example 8.4 Compensating Transaction

EIS TIER TRANSACTIONS 271

DEA2e.book Page 271 Friday, March 8, 2002 12:31 AM
The methods updateERPSystem and updateJDBCDatabase contain code to
access and perform work on enterprise information systems. The
undoUpdateERPSystem method contains code to undo the effect of
updateERPSystem if the JTA transaction does not commit successfully.

Compensating transactions have a few pitfalls:

• Committed transactions cannot always be undone—Consider Code Exam-
ple 8.4. If for some reason the method undoUpdateERPSystem fails, the data will
be left in an inconsistent state.

• Server crashes can compromise atomicity—For example, if the system
crashes immediately after the method updateERPSystem, the two database up-
dates will not occur, resulting in a partial transaction

• Resource manager local transaction commits can violate isolation—When
using compensating transactions with non-JTA resources, committed resource
manager local transactions may subsequently be undone. In Code Example
8.4, a concurrent enterprise information system client may be using data from
the committed update to the enterprise resource planning system, and this data
may potentially be rolled back later. In other words, updates committed by a
resource manager local transaction may be visible to other transactions, even
before the distributed transaction commits.

8.7.4.1 Compensating Transaction Guidelines

Compensating transaction code should be encapsulated in a session enterprise bean
with a bean-managed transaction. The session bean may implement all of the enter-
prise information system access logic itself, or delegate some or all of the access
logic to other enterprise beans. If an enterprise bean’s only responsibility is to access
an enterprise information system that does not support JTA transactions, its transac-
tion attribute should be set to NotSupported to indicate that a JTA transaction will
not be used in the enterprise bean.

An application that depends on compensating transactions must have extra
logic to deal with potential failures and inconsistencies. The extra work and pit-
falls of compensating transactions mean applications should avoid using them
when possible. Instead, use JTA transactions to simply and safely achieve ACID
transaction properties across multiple components and enterprise information
systems.

CHAPTER 8 TRANSACTION MANAGEMENT272

DEA2e.book Page 272 Friday, March 8, 2002 12:31 AM
8.7.5 Isolation Level

An isolation level defines how concurrent transactions to an enterprise information
system are isolated from one another. Enterprise information systems usually
support the following isolation levels:

• ReadCommitted—This level prevents a transaction from reading uncommitted
changes from other transactions.

• RepeatableRead—This level prevents a transaction from reading uncommitted
changes from other transactions. In addition, it ensures that reading the same
data multiple times will return the same value even if another transaction mod-
ifies the data.

• Serializable—This level prevents a transaction from reading uncommitted
changes from other transactions and ensures that reading the same data multi-
ple times will return the same value even if another transaction modifies the
data. In addition, it ensures that if a query retrieves a result set based on a pred-
icate condition and another transaction inserts data that satisfy the predicate
condition, re-execution of the query will return the same result set.

Isolation level and concurrency are closely related. The isolation level indi-
cates the degree of responsibility given to the EIS for managing concurrent data
access. A lower isolation level typically allows greater concurrency, at the expense
of more complicated logic to deal with potential data inconsistencies. A higher
isolation level typically allows simpler logic, at the expense of system perfor-
mance due to internal EIS data locking to enforce ACID transaction properties. A
useful guideline is to use the highest isolation level provided by enterprise infor-
mation systems that gives acceptable performance.

For consistency, all enterprise information systems accessed by a J2EE appli-
cation should use the same isolation level. The J2EE specification version 1.3
does not define a standard way to set isolation levels when an enterprise informa-
tion system is accessed within JTA transactions. If a J2EE product does not
provide a way to configure the isolation level, the enterprise information system
default isolation level will be used. For most relational databases, the default iso-
lation level is ReadCommitted.

The isolation level should not change within a transaction, especially if some
work has already been done. Some enterprise information systems will force a
commit if you attempt to change the isolation level.

J2EE RESOURCE MANAGER TYPES 273

DEA2e.book Page 273 Friday, March 8, 2002 12:31 AM
8.7.6 Performance with Multiple Resource Managers

The J2EE platform provides distributed transaction support across multiple resource
managers, including JDBC databases, JMS providers, and EISes. The performance
impact of using multiple resource managers in the same transaction is an important
concern. Typically, a transaction that accesses more than one resource manager uses
the two-phase distributed commit protocol, resulting in additional transaction pro-
cessing overhead. Distributed transactions also cause additional administrative over-
head; for example, partial failures of in-doubt transactions must always be resolved.
Therefore, an application should minimize the use of multiple resource managers in
the same transaction where possible (for example, by consolidating data into one
EIS). However, JTA transactions should definitely be used when accessing multiple
transactional resources. The benefits of data integrity and ease of programming that
JTA transactions provide definitely outweigh the additional overhead incurred by
two-phase commit.

8.8 J2EE Resource Manager Types

The J2EE architecture defines transactional behavior for three types of resource
managers: JDBC-compliant databases, J2EE Connector-enabled information sys-
tems, and JMS providers. All three types of resource managers may be used within
the scope of a single distributed transaction. Each type has somewhat different
requirements and transactional semantics. This section describes these resource
manager types and the requirements the J2EE platform specification places on them.
It also explains their transactional semantics.

8.8.1 JDBC Databases

A J2EE product is required to provide transactional access to one JDBC resource
per transaction. Transactional access to JDBC resources is available from servlets,
JSP pages, and enterprise beans. Multiple components accessing the same JDBC
resource within the scope of the same transaction are supported. For example, a
servlet may start a transaction, modify a database, and invoke methods on an enter-
prise bean that modifies that same database, all within the scope of the same transac-
tion.

Products that support access to multiple JDBC resources within a single trans-
action must do so with platform-specific APIs. Applications that use these fea-
tures are not portable.

CHAPTER 8 TRANSACTION MANAGEMENT274

DEA2e.book Page 274 Friday, March 8, 2002 12:31 AM
8.8.2 JMS Providers

A J2EE product is required to support at least one JMS provider per transaction.
Transaction access to a JMS provider is available from servlets, JSP pages, and
enterprise beans. Like JDBC connections, multiple components, potentially in dif-
ferent tiers, must be able to access the JMS provider within the same transaction
scope. As with JDBC databases, accessing multiple JMS providers within a single
transaction requires platform-specific APIs, sacrificing portability.

The transactional semantics of JMS message transmission refers to the trans-
mission of the message itself, not necessarily any side-effect that transmission
may cause. Each transaction groups a set of produced messages and a set of con-
sumed messages into an atomic unit of work. Messages that are produced within a
transaction are not immediately transmitted; instead, they are sent only once the
transaction is committed. The messages are discarded if the transaction is rolled
back. Similarly, messages are not consumed within a transaction until the transac-
tion is committed. If the transaction is rolled back, messages will be redelivered
and will remain available for consumption.

In JMS, transactions are never propagated between the sender and the recipi-
ent of a JMS message. In other words, the sender and the recipient of a JMS
message can never be in the same transaction. The JMS transaction semantics pro-
vides atomicity on the sending and receiving of messages. For example, if an
application sends two messages within a transaction T1, either both messages will
be sent or they will both be discarded. On the recipient side, if both messages are
delivered in a different transaction T2, the JMS provider will attempt to re-deliver
the messages again if transaction T2 is rolled back. These are separate operations,
and transaction T1 and T2 are independent of each other.

The transaction semantics of JMS presents one potential deadlock scenario
for J2EE applications. Suppose an application A sends a JMS message to applica-
tion B and suspends processing until it receives a message (for example, an
acknowledgement message) from application B. If this work is done in a single
transaction, application A will wait forever because the message from application
A to B will not be sent until the transaction commits. To avoid this problem, the
sending and receiving of messages in application A should be broken into two
separate transactions.

8.8.3 J2EE Connector Architecture

The J2EE Connector architecture defines a standard architecture for integrating with
heterogeneous EIS resources. It defines the contracts for a J2EE server as well as for

J2EE RESOURCE MANAGER TYPES 275

DEA2e.book Page 275 Friday, March 8, 2002 12:31 AM
resource adapters, which are system-level software drivers for specific EIS
resources. These standard contracts provide pluggability between application
servers and EISs.

A resource adapter can choose to support three different levels of transactions:

• NoTransaction—No transaction support is provided.

• LocalTransaction—Resource manager local transactions are supported.

• XATransaction—Resource adapter supports XA and the JTA XAResource

interface. A resource adapter supporting XATransaction must also support
LocalTransaction.

If a NoTransaction resource adapter is used as part of a JTA transaction, the
action performed through the resource adapter will be independent of the transac-
tion. In other words, the operations performed will not be rolled back even if the
JTA transaction itself is rolled back.

If a LocalTransaction resource adapter is used in a JTA transaction, no other
transactional resources (for example, JDBC or JMS access) can be used in the
same transaction. This is because a LocalTransaction resource adapter does not
support two-phase commit and thus cannot be mixed with other transactional
resource managers in the same transaction.

The XATransaction resource adapter is the most flexible and can be mixed
with other transactional resources in the same JTA transaction. For example, a
J2EE application can update a JDBC database, send a JMS Message, and access
an EIS resource in the same transaction provided the resource adapter used to
access the EIS supports XATransaction. Note that this scenario is illegal if the
resource adapter only supports LocalTransaction because a LocalTransaction

resource adapter cannot be mixed with other transactional resources in the same
transaction. This scenario is still valid if the resource adapter only supports the
NoTransaction transaction level. However, the access to the EIS will not be part
of the JTA transaction. Table 8.1 summarizes the behavior for resource adapters
with different transactional levels.

CHAPTER 8 TRANSACTION MANAGEMENT276

DEA2e.book Page 276 Friday, March 8, 2002 12:31 AM
Applications should use an XATransaction resource adapter whenever possi-
ble for maximum flexibility and data integrity. If an XATransaction resource
adapter is not available, a LocalTransaction resource adapter can provide similar
transaction behavior as long as there is only one resource adapter in the transac-
tion. An application may need to use a compensating transaction (see Section
8.7.4 on page 269) if it is necessary to access multiple resources within a single
transaction. An application should use a NoTransaction resource adapter only if
transactional access to a particular EIS is not important.

8.9 Summary

This chapter provides the guidelines for using transactions on the J2EE platform.
It describes the J2EE transactional model available to each J2EE component type—
application clients, JSP pages and servlets, and enterprise beans—and enterprise
information systems.

The J2EE platform provides powerful support for writing transactional appli-
cations. It contains the Java Transaction API, which allows applications to access
transactions in a manner that is independent of specific implementations and pro-
vides a means for declaratively specifying the transactional needs of an application.
These capabilities shift the burden of transaction management from J2EE applica-
tion component providers to J2EE product vendors. Application component pro-
viders can thus focus on specifying the desired transaction behavior and rely on a
J2EE product to implement the behavior.

Table 8.1 Transactional Behavior for Resource Adapters

Transaction Level Work Performed as Part of
JTA Transaction

Mixing with Other Transac-
tional Resources

NoTransaction No Allowed

LocalTransaction Yes Not Allowed

XATransaction Yes Allowed

REFERENCES AND RESOURCES 277

DEA2e.book Page 277 Friday, March 8, 2002 12:31 AM
8.10 References and Resources

• Transaction Processing: Concepts and Techniques. J. Gray, A. Reuter. Copy-
right 1992, Morgan Kaufman Publishers.

• Principles of Transaction Processing for the Systems Professional. P. Bern-
stein, E. Newcomer. Copyright 1996, Morgan Kaufman Publishers.

• Distributed TP: The XA Specification. The Open Group. Copyright 1992.

• The Java Transaction Architecture specification
<http://java.sun.com/products/jta>

• The Java Connector Architecture specification
<http://java.sun.com/j2ee/download.html>

DEA2e.book Page 278 Friday, March 8, 2002 12:31 AM

DEA2e.book Page 279 Friday, March 8, 2002 12:31 AM
C H A P T E R 9
Security
by Ron Monzillo

IN an enterprise computing environment, failure, compromise, or lack of availabil-
ity of computing resources can jeopardize the viability of the enterprise. An organi-
zation must take steps to identify threats to security. Once they are identified, steps
should be taken to reduce these threats.

Although J2EE products, and hence J2EE applications, may not displace
existing enterprise security infrastructures, they do offer significant value when
integrated with these existing infrastructures. The J2EE application programming
model attempts to leverage existing security services rather than require new ser-
vices or mechanisms.

This discussion begins with a review of some security concepts and mecha-
nisms. It describes the security concerns and characteristics of enterprise applica-
tions and explores the application of J2EE security mechanisms to the design,
implementation, and deployment of secure enterprise applications.

9.1 Security Threats and Mechanisms

Threats to enterprise-critical assets fall into a few general categories:

• Disclosure of confidential information

• Modification or destruction of information

• Misappropriation of protected resources
279

CHAPTER 9 SECURITY280

DEA2e.book Page 280 Friday, March 8, 2002 12:31 AM
• Compromise of accountability

• Misappropriation that compromises availability

Depending on the environment in which an enterprise application operates,
these threats may manifest themselves in different forms. For example, in a tradi-
tional single system environment, a threat of disclosure might manifest itself in
the vulnerability of information kept in files. In a distributed environment with
multiple servers and clients, a threat of disclosure might also result from expo-
sures occurring as the result of networking.

Although not all threats can or need be eliminated, there are many circum-
stances where exposure can be reduced to an acceptable level through the use of
the following security mechanisms: authentication, authorization, signing,
encryption, and auditing. The following sections describe J2EE platform security
mechanisms and indicate how to use the mechanisms to secure J2EE applications.

9.2 Authentication

In distributed component computing, authentication is the mechanism by which
callers and service providers prove to one another that they are acting on behalf of
specific users or systems. When the proof is bidirectional, it is referred to as mutual
authentication. Authentication establishes the call identities and proves that the par-
ticipants are authentic instances of these identities. An entity that participates in a
call without establishing or proving an identity (that is, anonymously) is called
unauthenticated.

When a client program run by a user makes the calls, the caller identity is
likely to be that of the user. When the caller is an application component acting as
an intermediary in a call chain originating with some user, the identity may be
associated with that of the user, in which case the component would be imperson-
ating the user. Alternatively, one application component may call another with an
identity of its own and unrelated to that of its caller.

Authentication is often achieved in two phases. First, an authentication
context is established by performing a service-independent authentication requir-
ing knowledge of some secret. The authentication context encapsulates the iden-
tity and is able to fabricate authenticators (proofs of identity). Then, the
authentication context is used to authenticate with other (called or calling) enti-
ties. The basis of authentication entails controlling access to the authentication
context and thus the ability to authenticate as the associated identity. Among the

AUTHENTICATION 281

DEA2e.book Page 281 Friday, March 8, 2002 12:31 AM
possible policies and mechanisms for controlling access to an authentication
context are:

• Once the user performs an initial authentication, the processes the user starts
inherit access to the authentication context.

• When a component is authenticated, access to the authentication context may
be available to other related or trusted components, such as those that are part
of the same application.

• When a component is expected to impersonate its caller, the caller may dele-
gate its authentication context to the called component.

9.2.1 Protection Domains

Some entities may communicate without requiring authentication. A protection
domain is a set of entities that are assumed or known to trust each other. Entities in
such a domain need not be authenticated to one another.

Figure 9.1 illustrates that authentication is only required for interactions that
cross the boundary of a protection domain. When one component interacts with
others in the same protection domain, no constraint is placed on the identity that it
can associate with its call. The caller may propagate the caller’s identity, or
choose an identity based on knowledge of authorization constraints imposed by
the called component, since the caller’s ability to claim an identity is based on
trust, not authentication. If the concept of protection domains is employed to
avoid the need for authentication, there must be a means to establish the bound-
aries of protection domains so that trust in unproven identities does not cross these
boundaries. Entities that are universally trusting of all other entities should not be
trusted as a member of any protection domain.

In the J2EE architecture, a container provides an authentication boundary
between external callers and the components it hosts. The boundaries of protec-
tion domains don’t always align with those of containers. Containers enforce the
boundaries, and implementations are likely to support protection domains that
span containers. Although a container is not required to host components from
different protection domains, an implementation may choose to do so.

CHAPTER 9 SECURITY282

DEA2e.book Page 282 Friday, March 8, 2002 12:31 AM
Figure 9.1 Protection Domain

For inbound calls, it is the container’s responsibility to make an authentic rep-
resentation of the caller identity available to the component in the form of a cre-
dential. An X.509 certificate and a Kerberos service ticket are examples of
credentials used in computing environments. They are analogous to credentials
such as a passport or a driver’s license used in person-to-person interactions.

For outbound calls, the container is responsible for establishing the identity of
the calling component. In general, it is the job of the container to provide bidirec-
tional authentication functionality to enforce the protection domain boundaries of
the deployed applications.

Without proof of component identity, the interacting containers must deter-
mine whether there is sufficient inter-container trust to accept the container-pro-
vided representations of component identity. In some environments, trust may
simply be presumed; in others it may be evaluated more explicitly based on inter-
container authentication and possibly the comparison of container identities to
lists of trusted identities. If a required proof of identity is not provided, and when
a sufficient inter-container trust relationship is absent, a container should reject or
abandon a call.

Figure 9.2 illustrates these authentication concepts in two scenarios: an
authenticated user scenario and an unauthenticated user scenario.

AUTHENTICATION 283

DEA2e.book Page 283 Friday, March 8, 2002 12:31 AM
Figure 9.2 Authentication Scenarios

The authenticated user invokes a calling component that employs the user’s
authentication context to prove its identity to an intermediate component. When
the called component makes a call, it propagates the identity of its caller. The
propagated identity is unproven, so it will be accepted only if the targets trust the
caller—that is, if they reside in the same protection domain.

The figure also differentiates identity propagation from delegation and subse-
quent impersonation. In propagation, the service providers bear the burden of
determining whether they should accept propagated identities as authentic. In del-
egation, the user provides the called component with access to its authentication

CHAPTER 9 SECURITY284

DEA2e.book Page 284 Friday, March 8, 2002 12:31 AM
context, enabling the called component to impersonate the user in subsequent
calls. Impersonation requires the user to trust the impersonator to act in its behalf.

The lower portion of the figure depicts the propagation of an unauthenticated
user identity in the form of an anonymous credential. An anonymous credential is
the one form of unproven identity that may be propagated independent of trust.

9.2.2 Authentication Mechanisms

In a typical J2EE application, a user would employ a client container to interact with
enterprise resources in the Web or EJB tiers. Resources available to the user may be
protected or unprotected. Protected resources are distinguished by the presence of
authorization rules (see Section 9.3 on page 293) that restrict access to some subset
of non-anonymous identities. To access a protected resource, a user must present a
non-anonymous credential such that its identity can be evaluated against the
resource authorization policy. In the absence of a trust relationship between the
client and resource containers, the credential must be accompanied by an authenti-
cator that demonstrates the user’s right to claim the identity as its own. This section
describes the various authentication mechanisms supported by the J2EE platform
and how to configure them.

9.2.2.1 Web Tier Authentication

An application component provider can designate that a collection of Web resources
(Web components, HTML documents, image files, compressed archives, and so on)
is protected by specifying an authorization constraint (described in Section 9.3.7.1
on page 299) for the collection. When an unauthenticated user tries to access a pro-
tected Web resource, the Web container will prompt the user to authenticate with the
Web container. The request will not be accepted by the Web container until the user
identity has been proven to the Web container and shown to be one of the identities
granted permission to access the resource. Caller authentication performed on the
first access to a protected resource is called lazy authentication.

When a user tries to access a protected Web-tier resource, the Web container
activates the authentication mechanism defined in the application’s deployment
descriptor. J2EE Web containers must support three authentication mechanisms:
HTTP basic authentication, form-based authentication, and HTTPS mutual
authentication. In addition, they are encouraged to support HTTP digest authenti-
cation.

AUTHENTICATION 285

DEA2e.book Page 285 Friday, March 8, 2002 12:31 AM
In basic authentication, the Web server authenticates a principal using the
user name and password obtained from the Web client. In digest authentication a
Web client authenticates to a Web server by sending the server a message digest
along with its HTTP request message. The digest is computed by employing a
one-way hash algorithm to a concatenation of the HTTP request message and the
client’s password. The digest is typically much smaller than the HTTP request and
doesn’t contain the password.

Form-based authentication lets developers customize the authentication user
interface presented by an HTTP browser. Like HTTP basic authentication, form-
based authentication is a relatively vulnerable authentication mechanism, since
the content of the user dialog is sent as plain text and the target server is not
authenticated.

In single-sign on environments, discretion must be exercised in customizing
an application’s authentication interface. It may be preferable to provide a single
enterprise-wide custom user authentication interface rather than implementing a
set of application-specific interfaces.

With mutual authentication, the client and server use X.509 certificates to
establish their identity. Mutual authentication occurs over a channel protected by
SSL. Hybrid mechanisms featuring either HTTP basic authentication, form-based
authentication, or HTTP digest authentication over an SSL protected channel are
also supported. SSL is used to protect the authenticators during network commu-
nication and to authenticate the server to the client such that authenticators are not
exchanged with the wrong entities.

9.2.2.1.1 Authentication Configuration

An authentication mechanism is configured using the login-config element of the
Web component deployment descriptor. Code Example 9.1, Code Example 9.2, and
Code Example 9.3 illustrate the declarations of the authentication mechanisms
required of J2EE Web containers.

<web-app>

<login-config>

<auth-method>BASIC</auth-method>

<realm-name>jpets</realm-name>

</login-config>

</web-app>

Code Example 9.1 HTTP Basic Authentication Configuration

CHAPTER 9 SECURITY286

DEA2e.book Page 286 Friday, March 8, 2002 12:31 AM
<web-app>

<login-config>

<auth-method>FORM</auth-method>

<form-login-config>

<form-login-page>login.jsp</form-login-page>

<form-error-page>error.jsp</form-error-page>

</form-login-config>

</login-config>

</web-app>

Code Example 9.2 Form-Based Authentication Configuration

<web-app>

<login-config>

<auth-method>CLIENT-CERT</auth-method>

</login-config>

</web-app>

Code Example 9.3 Client Certificate Authentication Configuration

9.2.2.1.2 Hybrid Authentication

In both HTTP basic and form-based authentication, passwords are not protected for
confidentiality. This vulnerability can be overcome by running these authentication
protocols over an SSL-protected session that ensures that all message content,
including the client authenticators, are protected for confidentiality. Code Example
9.4 demonstrates how to configure HTTP basic authentication over SSL using the
transport-guarantee element. Form-based authentication over SSL is configured
in the same way.

<web-app>

<security-constraint>

...

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

AUTHENTICATION 287

DEA2e.book Page 287 Friday, March 8, 2002 12:31 AM
</security-constraint>

</web-app>

Code Example 9.4 SSL Hybrid Authentication Mechanism

9.2.2.1.3 Changing Authentication Identity

Sometimes users need to change authentication identities. This could happen when
an authenticated user tries to visit a protected Web resource and is rebuffed for lack
of access authority to the resource. Although the user can exit the browser and
restart the authentication process, this is not always acceptable. Applications should
give the user an opportunity to invalidate the authentication session and reauthenti-
cate as a more appropriately privileged identity.

The error-page element may be used in the deployment descriptor of a Web
application to configure a resource to be invoked by the Web container when the
processing of an HTTP request produces a particular HTTP error code. This func-
tionality may be employed to redirect an unauthorized request to a resource within
the Web container that gives the user an opportunity to invalidate its authentica-
tion session. For example, the error-handling resource could return a form to the
user containing the URI and parameters of the unauthorized request. The form
would provide the user with an option to invalidate the current authentication ses-
sion. Choosing to invalidate would cause the form containing the URI and param-
eters to be submitted to the Web container, where a session invalidation resource
would be invoked. This resource would invalidate the current authentication
session by calling HttpSession.invalidate. It then redirects the user, via the
embedded URI and parameters, to the original unauthorized resource.

9.2.2.2 EJB Tier Authentication

Prior to J2EE 1.3 and EJB 2.0, the J2EE platform did not require that EJB contain-
ers implement specific authentication mechanisms. Moreover, in many environ-
ments, network firewall technology prevents direct interaction (via RMI) between
client containers and enterprise beans. As a result, it is common for an EJB con-
tainer to rely on the authentication mechanisms and network accessibility of a Web
container to vouch for the identity of users accessing enterprise beans via protected
Web components. As illustrated in Figure 9.3, such configurations use the Web con-

CHAPTER 9 SECURITY288

DEA2e.book Page 288 Friday, March 8, 2002 12:31 AM
tainer to enforce protection domain boundaries for Web components and the enter-
prise beans that they call.

Figure 9.3 Typical J2EE Application Configuration

9.2.2.2.1 Common Secure Interoperability (CSIv2)

The J2EE 1.3 platform requires EJB containers and EJB client containers to support
version 2 of the Common Secure Interoperability (CSIv2) protocol. CSIv2, a stan-
dard of the Object Management Group (OMG), defines a wire protocol for securing
invocations made over RMI-IIOP. CSIv2 is designed to be used in environments
where protecting the integrity or confidentiality of messages and authenticating
servers to clients are enforced at the transport layer, perhaps by SSL or TLS. CSIv2
defines the Security Attribute Service (SAS) protocol that can be used above the
transport to perform client authentication and impersonation where such functional-
ity cannot be achieved using the underlying transport. The impersonation mecha-
nism, called identity assertion, makes it possible for an intermediate to assert an
identity other than its own, based on trust by the target in the intermediate. Identity
assertion can be used by an intermediate J2EE container to propagate the identity of
its callers in its calls. J2EE containers employ the CSIv2 identity assertion mecha-
nism to establish the identities used by components to call other components as
defined by application deployers. Figure 9.4 illustrates the CSIv2 architecture.

AUTHENTICATION 289

DEA2e.book Page 289 Friday, March 8, 2002 12:31 AM
Figure 9.4 CSIv2 Protocol Architecture

CSIv2 defines an annotation language for application servers to use to com-
municate security requirements to clients. Application servers use this language in
their Interoperable Object References (IORs) so that their security requirements
are available to inform the actions of their clients. A target’s security requirements
are conveyed as a mechanism definition for each CSIv2 layer. Each of these
defines the combination of supported and required security functionality that must
be satisfied by clients of the target. When a J2EE application is deployed on an
application server, the deployer must define the CSIv2 security policy to be com-
municated to clients and enforced by the application server. The most notable
aspects of this policy are whether the target requires an integrity and/or confidenti-
ality protected transport, whether the target requires client authentication, and the
mechanism or mechanisms required for client authentication.

9.2.2.3 Client Identity Selection

The container of a J2EE server-side component establishes the invocation identity
used when the component calls other J2EE components. The invocation identity
established by the container depends on the identity selection policy defined by the
deployer. A deployer may associate one of two identity selection policies with a
component; use-caller-identity or runas(role-name). The use-caller-

identity policy causes the container to use the identity of a component’s caller in
all calls made by the component. The runas(role-name) policy causes the con-

CHAPTER 9 SECURITY290

DEA2e.book Page 290 Friday, March 8, 2002 12:31 AM
tainer to use a static identity selected by the deployer from the principal identities
mapped to the named security role.

Component identity selection policies may be defined for J2EE Web and EJB
resources. Application developers who wish to hold component callers account-
able for actions the components perform on their behalf should associate a use-

caller-identity policy with the components. Use of the runas(role-name)

identity selection policy breaks the chain of traceability and may be used to afford
the caller with the privileges of the component. Code Example 9.5 depicts the
configuration of client identity selection policies in an EJB deployment descriptor.

<enterprise-beans>

<entity>

<security-identity>

<use-caller-identity/>

</security-identity>

...

</entity>

<session>

<security-identity>

<run-as>

<role-name> guest </role-name>

</run-as>

</security-identity>

...

</session>

...

</enterprise-beans>

Code Example 9.5 Configuring EJB Identity Selection Policies

Code Example 9.6 depicts the configuration of client identity selection policies
in Web component deployment descriptors. In the absence of a run-as specification,
the use-caller-identity policy is assumed.

<web-app>

<servlet>

<run-as>

AUTHENTICATION 291

DEA2e.book Page 291 Friday, March 8, 2002 12:31 AM
<role-name> guest </role-name>

</run-as>

...

</servlet>

...

</web-app>

Code Example 9.6 Configuring Identity Selection Policies for Web Components

9.2.2.4 Enterprise Information System Tier Authentication

In integrating with enterprise information systems, J2EE components may use dif-
ferent security mechanisms and operate in different protection domains than the
resources they access. In these cases, the calling container can be configured to
manage the authentication to the resource for the calling component. This form of
authentication is called container-managed resource manager sign on. The J2EE
architecture also recognizes that some components require an ability to manage the
specification of caller identity and the production of a suitable authenticator directly.
For these applications, the J2EE architecture provides a means for an application
component to engage in what is called application-managed resource manager sign
on. Application-managed resource manager sign on is used when the ability to
manipulate the authentication details is a fundamental aspect of the component’s
functionality.

The resource-ref elements of a component’s deployment descriptor
(described in greater detail in Section 9.2.4 on page 293) declare the resources used
by the component. The value of the res-auth subelement declares whether sign
on to the resource is managed by the container or application. Components that
manage resource sign on can use the EJBContext.getCallerPrincipal or
HttpServletRequest.getUserPrincipal methods to obtain the identity of their
caller. A component can map the identity of its caller to a new identity and/or
authentication secret as required by the target enterprise information system. With
container-managed resource manager sign on, the container performs principal
mapping on behalf of the component.

Care should be taken to ensure that access to any component that encapsulates
or is provided by its container with a capability to sign on to another resource is
secured by appropriate authorization rules (see Section 9.3.6 on page 297).

The Connector architecture discussed in Section 6.2.1 on page 177 offers a
standard API for application-managed resource manager sign on. The Connector

CHAPTER 9 SECURITY292

DEA2e.book Page 292 Friday, March 8, 2002 12:31 AM
provided API will ensure portability of components that authenticate with enter-
prise information systems.

9.2.3 Authentication Call Patterns

In a multitier, multicomponent application, certain call patterns should be avoided
for usability reasons. For example, an application that calls protected EJB resources
from unprotected Web resources can run into problems. This is because the Web
tier’s lazy authentication paradigm only provides users with an opportunity to
authenticate when they attempt to access a protected resource. An unauthenticated
user who attempts to visit an authentication-protected EJB resource from an unpro-
tected Web resource will not be provided an opportunity to satisfy the authentication
requirement of the EJB resource. One way to ensure that users of such applications
can authenticate is to place protected Web resources in front of protected EJB com-
ponents. Another approach is to include a link to a protected Web resource (perhaps
appearing as an authenticate button) on Web resources that call protected EJB
resources. This approach gives the user the option of authenticating by visiting a
protected Web resource linked behind the button prior to accessing an EJB
resource. This is especially useful where the user may have been denied access by
the EJB container through an unprotected page.

Other call patterns should be avoided for security reasons. For example, when
an application is deployed with a hybrid authentication mechanism, the deployer
must ensure that the transport-guarantee element of each protected Web
resource is set to CONFIDENTIAL. Otherwise, the client authenticator won’t be fully
protected. When form-based login is used over SSL, the transport-guarantee of
the login page should be set to CONFIDENTIAL.

9.2.3.1 Self-Registration

Some Web-based applications must authenticate users whose identities cannot be
known in advance of their first use of the application. In contrast to typical computer
user authentication environments, where a user must wait for an administrator to set
up the user’s account, such applications require an automated means for users to
register an authentication identity for themselves. To self-register, the user is
required to provide his or her identity and may be required to provide a password to
protect the account along with one or more additional forms of identification, agree
to some contractual obligations, and/or provide credit card information for payment.

AUTHORIZATION 293

DEA2e.book Page 293 Friday, March 8, 2002 12:31 AM
Once the registration dialog is complete, the user may authenticate as necessary to
access the protected resources of the site.

The self-registration mechanisms provided by J2EE platforms are platform-
specific. Applications that depend on these mechanisms should do so in a fashion
that allows them to evolve, employing standard facilities and APIs as they are
added to the platform. In the absence of portable self-registration mechanisms,
application developers should resist the temptation to move user authentication
and authorization into the application.

9.2.4 Exposing Authentication Boundaries with References

The application component provider is responsible for declaring references made by
each component to other J2EE components and to external resources. These decla-
rations are made in the deployment descriptor. In addition to their role in locating
services, such declarations inform the deployer of all the places in the application
where authentication may be necessary. Enterprise bean references are declared
using ejb-ref elements. Enterprise information system references are declared with
resource-ref elements. In both cases, the declarations are made in the scope of the
calling component, and the collection of declared references serves to expose the
application’s inter-component/resource call tree.

J2EE platform deployment tools should present enterprise bean references to
application deployers so that deployers know to secure interactions between the
calling and called components. Deployers should use this knowledge to define
CSIv2 security mechanism definitions that will appropriately secure the enterprise
beans in all the ways that they are called. Deployers should use knowledge of the
inter-container interactions that may occur as a result of the inter-component calls
to configure appropriate inter-container security mechanisms and trust relation-
ships.

9.3 Authorization

Authorization mechanisms limit interactions with resources to collections of users
or systems for the purpose of enforcing integrity, confidentiality, or availability
constraints. Such mechanisms allow only authentic caller identities to access com-
ponents. Mechanisms provided by the J2EE platform can be used to control access
to code based on identity properties, such as the location and signer of the calling
code, and the identity of the user of the calling code. As mentioned in the section on
authentication, caller identity can be established by selecting from the set of authen-

CHAPTER 9 SECURITY294

DEA2e.book Page 294 Friday, March 8, 2002 12:31 AM
tication contexts available to the calling code. Alternatively, the caller may propa-
gate the identity of its caller, select an arbitrary identity, or make the call
anonymously.

In all cases, a credential is made available to the called component. The cre-
dential contains information describing the caller through its identity attributes. In
the case of anonymous callers, a special credential is used. These attributes
uniquely identify the caller in the context of the authority that issued the creden-
tial. Depending on the type of credential, it may also contain other attributes that
define shared authorization properties, such as group memberships, that distin-
guish collections of related credentials. The identity and shared authorization
attributes in the credential are referred to as the caller’s security attributes. In the
J2SE platform, the identity attributes of the code used by the caller may also be
included in the caller’s security attributes. Access to the called component is
determined by comparing the caller’s security attributes with those required to
access the called component.

In the J2EE architecture, a container serves as an authorization boundary
between the components it hosts and their callers. The authorization boundary
exists inside the container’s authentication boundary so that authorization is con-
sidered in the context of successful authentication. For inbound calls, the con-
tainer compares security attributes from the caller’s credential with the access
control rules for the target component. If the rules are satisfied, the call is allowed.
Otherwise, the call is rejected.

There are two fundamental approaches to defining access control rules: capa-
bilities and permissions. Capabilities focus on what a caller can do. Permissions
focus on who can do something. The J2EE application programming model
focuses on permissions. In the J2EE architecture, the job of the deployer is to map
the permission model of the application to the capabilities of users in the opera-
tional environment.

9.3.1 Declarative Authorization

The deployer establishes the container-enforced access control rules associated with
a J2EE application. The deployer uses a deployment tool to map an application per-
mission model, which is typically supplied by the application assembler, to policy
and mechanisms specific to the operational environment. The application permis-
sion model is defined in a deployment descriptor.

The deployment descriptor defines logical privileges called security roles and
associates them with components to define privileges required to be granted per-

AUTHORIZATION 295

DEA2e.book Page 295 Friday, March 8, 2002 12:31 AM
mission to access components. The deployer assigns logical privileges to specific
callers to establish the capabilities of users in the runtime environment. Callers are
assigned logical privileges based on the values of their security attributes. For
example, a deployer might map a security role to a security group in the opera-
tional environment. As a result, any caller whose security attributes indicate mem-
bership in the group is assigned the privilege represented by the role. As another
example, a deployer might map a security role to a list containing one or more
principal identities in the operational environment. Callers then authenticated by
one of these identities are assigned the privilege represented by the role.

The EJB container grants permission to access a method only to callers that
have at least one of the privileges associated with the method. Security roles also
protect Web resource collections, that is, a URL pattern and an associated HTTP
method, such as GET. The Web container enforces authorization requirements
similar to those for an EJB container.

In both tiers, access control policy is defined at deployment time, rather than
during application development. The deployer can modify the policy provided by
the application assembler. The deployer refines the privileges required to access
the components, and defines the correspondence between the security attributes
presented by callers and the container privileges. In any container, the mapping
from security attributes to privileges is scoped to the application so that the
mapping applied to the components of one application may be different from that
of another application.

9.3.2 Programmatic Authorization

A J2EE container makes access control decisions before dispatching method calls to
a component. The logic or state of the component doesn’t factor in these access
decisions. However, a component can use two methods,
EJBContext.isCallerInRole (for use by enterprise bean code) and
HttpServletRequest.isUserInRole (for use by Web components), to perform
finer-grained access control. A component uses these methods to determine whether
a caller has been granted a privilege selected by the component based on the param-
eters of the call, the internal state of the component, or other factors such as the time
of the call.

The application component provider of a component that calls one of these
functions must declare the complete set of distinct roleName values to be used in
all calls. These declarations appear in the deployment descriptor as security-

role-ref elements. Each security-role-ref element links a privilege name

CHAPTER 9 SECURITY296

DEA2e.book Page 296 Friday, March 8, 2002 12:31 AM
embedded in the application as a roleName to a security role. Ultimately, the
deployer establishes the link between the privilege names embedded in the appli-
cation and the security roles defined in the deployment descriptor. The link
between privilege names and security roles may differ for components in the same
application.

In addition to testing for specific privileges, an application component can
compare the identity of its caller, acquired using
EJBContext.getCallerPrincipal or HttpServletRequest.getUserPrincipal, to
the distinguished caller identities embedded in the state of the component when it
was created. If the identity of the caller is equivalent to a distinguished caller, the
component can allow the caller to proceed. If not, the component can prevent the
caller from further interaction. The caller principal returned by a container depends
on the authentication mechanism used by the caller. Also, containers from different
vendors may return different principals for the same user authenticating by the
same mechanism. To account for variability in principal forms, an application
developer who chooses to apply distinguished caller state in component access
decisions should allow multiple distinguished caller identities, representing the
same user, to be associated with components. This is recommended especially
where application flexibility or portability is a priority.

9.3.3 Declarative versus Programmatic Authorization

There is a trade-off between the external access control policy configured by the
deployer and the internal policy embedded in the application by the component pro-
vider. The external policy is more flexible after the application has been written. The
internal policy provides more flexible functionality while the application is being
written. In addition, the external policy is transparent and completely comprehensi-
ble to the deployer, while internal policy is buried in the application and may only
be completely understood by the application developer. These trade-offs should be
considered in choosing the authorization model for particular components and
methods.

9.3.4 Isolation

When designing the access control rules for protected resources, take care to ensure
that the authorization policy is consistently enforced across all the paths by which
the resource may be accessed. For example, when method-level access control rules
are applied to a component, care must be taken that a less-protected method does not

AUTHORIZATION 297

DEA2e.book Page 297 Friday, March 8, 2002 12:31 AM
serve to undermine the policy enforced by a more rigorously protected method.
Such considerations are most significant when component state is shared by dispar-
ately-protected methods or URL patterns. The simplifying rule of thumb is to apply
the same access control rules to all the access paths of a component and to partition
an application as necessary to enforce this guideline unless there is some specific
need to architect an application otherwise.

As a point of information, the CSIv2 annotations defined in IORs pertain to
all the methods of an enterprise bean. This means that one cannot differentiate the
protection of methods of an enterprise bean with respect to authentication, integ-
rity, or confidentiality.

9.3.5 Affects of Identity Selection

When setting an application’s access control policy, the application component pro-
vider bases policy decisions on assumptions about the call identities selected by the
application callers. When a call passes through intermediary components, the caller
identity at the destination component may depend on the identity selection decisions
made by the intermediaries. The destination component may assume that caller
identities have been propagated along the call chain so that the caller identity is that
of the caller who initiated the chain. In other cases, the called component must
assume that one or more of the callers in its call path will employ an identity selec-
tion policy other than identity propagation. The application assembler is responsible
for communicating component identity selection policies in the deployment descrip-
tors. In the absence of a specific representation of identity selection policy from the
assembler, the deployer should assume that a component will call other components
using the identity of its caller.

9.3.6 Encapsulation for Access Control

An application’s component model may impose authorization boundaries around
what might otherwise be unprotected resources, using accessor components to
implement the authorization barrier. If accessor components are used in this way,
access control can either be done externally by the container, internally by the com-
ponent, or both.

An accessor component may encapsulate the mapping to an authentication
context suitable for interacting with an external resource. When using principal
mapping to authenticate and gain access to enterprise information system
resources, authorization mechanisms applied to the accessor component can

CHAPTER 9 SECURITY298

DEA2e.book Page 298 Friday, March 8, 2002 12:31 AM
control who is authorized to access a mapping. Depending on the form of the
mapping, the authorization rules may be more or less complex. For example, if all
access to a resource is performed via a single conceptually omnipotent enterprise
information system tier identity, then the J2EE application can implement secure
access to the resource by limiting who can use the accessor. If the mapping of
authentication context is many-to-many, then the authorization configuration of
the accessor may need to define which of a collection of mappings are accessible
to a caller and which should be assumed by default if a caller does not assert the
mapping it requires.

9.3.6.1 Shared Accessor Identity

An accessor component may be given access to an external resource either by con-
tainer-managed sign on or bean-managed sign on. Permissions associated with the
methods of the component ensure that access to the external resource is granted only
to those J2EE principals that have access to the component.

9.3.6.2 Private Accessor Identity

An enterprise bean, such as a stateful session bean, can use bean-managed sign on to
an external resource. The session bean relies on a protected entity bean to map the
J2EE principal to the corresponding principal in the external resource’s realm, and
also to the corresponding authenticator if necessary. In this scenario, either one pro-
tected entity bean holds all the mappings, and that bean limits access to a particular
mapping to specific principals (returned by getCallerPrincipal), or there is one
entity bean per mapping. Section 9.3.2 on page 295 describes how application
developers who place a priority on application flexibility and portability must
account for variability in getCallerPrincipal return values.

9.3.7 Controlling Access to J2EE Resources

A client typically uses a J2EE application’s container to interact with enterprise
resources in the Web or EJB tiers. These resources may be protected or unprotected.
Protected resources have authorization rules defined in deployment descriptors that
restrict access to some subset of non-anonymous identities. To access protected
resources, users must present non-anonymous credentials to enable their identities
to be evaluated against the resource authorization policy.

AUTHORIZATION 299

DEA2e.book Page 299 Friday, March 8, 2002 12:31 AM
9.3.7.1 Controlling Access to Web Resources

To control access to a Web resource, an application component provider or applica-
tion assembler specifies a security-constraint element with an auth-constraint

subelement in the Web deployment descriptor. Code Example 9.7 illustrates the def-
inition of a protected resource in a Web component deployment descriptor. The
descriptor specifies that the URL /control/placeorder can be accessed only by
users acting in the role of customer.

<security-constraint>

<web-resource-collection>

<web-resource-name>placeorder</web-resource-name>

<url-pattern>/control/placeorder</url-pattern>

<http-method>POST</http-method>

<http-method>GET</http-method>

</web-resource-collection>

<auth-constraint>

<role-name>customer</role-name>

</auth-constraint>

</security-constraint>

Code Example 9.7 Web Resource Authorization Configuration

9.3.7.2 Controlling Access to Enterprise Beans

An application component provider or application assembler that has defined secu-
rity roles for an enterprise bean can also specify the methods of the bean’s remote,
home, local, and local home interfaces that each security role is allowed to invoke.
This is done in the form of method-permission elements. Ultimately, the assign-
ment of users to roles determines if a resource is protected. When the roles required
to access the enterprise bean are assigned only to authenticated users, the bean is
protected.

Code Example 9.8 contains two styles of method specifications. The first
refers to all of the methods of all of the interfaces (that is, remote, home, local,
and local home) of an enterprise bean. The second refers to a specific method that
occurs on an interface of an enterprise bean. If there are multiple methods with the
same overloaded name, this style refers to all overloaded methods. Method speci-
fications can be further qualified to identify methods with overloaded names by

CHAPTER 9 SECURITY300

DEA2e.book Page 300 Friday, March 8, 2002 12:31 AM
parameter signature, or to refer to methods of a specific interface of the enterprise
bean.

<method-permission>

<role-name>admin</role-name>

<method>

<ejb-name>TheOrder</ejb-name>

<method-name>*</method-name>

</method>

</method-permission>

<method-permission>

<role-name>customer</role-name>

<method>

<ejb-name>TheOrder</ejb-name>

<method-name>getDetails</method-name>

</method>

<method>

...

</method-permission>

Code Example 9.8 Enterprise Bean Authorization Configuration

In addition to the authorization policy defined in method-permission ele-
ments, method specifications may be added to the exclude-list to indicate that
access to them is to be denied independent of caller identity and whether the
methods are the subject of a method-permission element. Code Example 9.9 dem-
onstrates the use of the exclude-list.

AUTHORIZATION 301

DEA2e.book Page 301 Friday, March 8, 2002 12:31 AM
<exclude-list>

<method>

<ejb-name>SpecialOrder</ejb-name>

<method-name>*</method-name>

</method>

<method>

...

</exclude-list>

Code Example 9.9 Enterprise Bean Excluded method-permission

9.3.7.3 Unprotected Resources

Many applications feature unprotected Web-tier content, available to any caller
without authentication. Unprotected resources are characterized by the absence of a
requirement that their caller be authenticated. In the Web tier, unrestricted access is
provided simply by leaving out an authentication rule.

Some applications also feature unprotected enterprise beans. For example, the
sample application allows anonymous, unauthenticated users to access certain
EJB resources. In the EJB tier, the application assembler uses the unchecked

element in the method-permission element to indicate that the methods covered
by the specification are to be authorized by the container, independent of the iden-
tity of the caller. Code Example 9.10 demonstrates the use of the unchecked ele-
ment.

<method-permission>

<unchecked/>

<method>

<ejb-name>Catalogue</ejb-name>

<method-name>browseSpecials</method-name>

</method>

<method>

...

</method-permission>

Code Example 9.10 Enterprise Bean Unchecked method-permission

CHAPTER 9 SECURITY302

DEA2e.book Page 302 Friday, March 8, 2002 12:31 AM
9.3.8 Example

To understand how each application, and each component within an application, can
apply its own authorization requirements, consider the following examples.

One application is assembled from two enterprise beans, EJB 1 and EJB 2,
each with one method. Each method calls isCallerInRole with the role name
MANAGER. The deployment descriptor includes a security-role-ref element for
the call to isCallerInRole in each enterprise bean. The security-role-ref for
EJB 1 links MANAGER to the role good-managers and the security-role-ref

element for EJB 2 links MANAGER to the role bad-managers. The deployment
descriptor defines two method-permission elements. One establishes that the role
employees can access all methods of EJB 1 and the other does the same for EJB 2.
The deployment descriptor has 3 security-role elements: employees, good-

managers, and bad-managers. The deployer assigns User 1 to roles employees and
good-managers and assigns User 2 to roles employees and bad-managers.

A second application, with one enterprise bean EJB 3, is also deployed in the
container. EJB 3 also makes a call to isCallerInRole with the role name MANAGER.
The deployment descriptor for this second application contains a security-role-

ref element that links MANAGER to the role good-managers. Similarly, the deploy-
ment descriptor defines one method-permission element that establishes that the
role employees can access all the methods of EJB 3. The deployment descriptor
has 2 role elements, employees and good-managers. The deployer assigns User 2
to roles employees and good-managers.

Figure 9.5 illustrates the configuration of method permissions as a relation-
ship between roles and methods. It also illustrates the mapping of caller security
attributes to roles, and the link between privilege names embedded in the applica-
tion and roles.

Table 9.1 lists the authorization decisions that occur when different users ini-
tiate method calls on these enterprise beans. For example, when User 1 initiates a
method call on EJB 2’s method, the container dispatches the call because the
method-permission element specifies the security roles employees and good-

managers, and the deployer has assigned User 1 to the employees security role.
However, the isCallerInRole(“MANAGER”) method returns false, because the
security-role-ref element for EJB 2 links MANAGER to the security role bad-

managers, which is not satisfied for User 1. When User 1 invokes a method on
EJB 3, the call isn’t even dispatched, because User 1 isn’t assigned to any security
roles.

AUTHORIZATION 303

DEA2e.book Page 303 Friday, March 8, 2002 12:31 AM
Figure 9.5 Authorization Scenario

Table 9.1 Authorization Decisions

Call Call Dispatched? isCallerInRole?

User 1 - EJB 1 yes true

User 1 - EJB 2 yes false

User 1 - EJB 3 no never called

User 2 - EJB 1 yes false

CHAPTER 9 SECURITY304

DEA2e.book Page 304 Friday, March 8, 2002 12:31 AM
9.4 Protecting Messages

In a distributed computing system, a significant amount of information is transmit-
ted through networks in the form of messages. Message content is subject to three
main types of attacks. Messages might be intercepted and modified for the purpose
of changing the affects they have on their recipients. Messages might be captured
and reused one or more times for the benefit of another party. Messages might be
monitored by an eavesdropper in an effort to capture information that would not oth-
erwise be available. Such attacks can be minimized by using integrity and confiden-
tiality mechanisms.

9.4.1 Integrity Mechanisms

Integrity mechanisms ensure that communication between entities is not being tam-
pered with by another party, especially one that can intercept and modify their com-
munications. Integrity mechanisms can also be used to ensure that messages can
only be used once.

Message integrity is ensured by attaching a message signature to a message.
The message signature is calculated by using a one-way hash algorithm to convert
the message contents into a typically smaller, fixed-length message digest that is
then signed (that is, cryptographically enciphered, typically using a public key
mechanism). A message signature ensures that modification of the message by
anyone other than the caller will be detectable by the receiver.

In the J2EE architecture, a container serves as an authentication boundary
between callers and the components it hosts. Information may flow in both direc-
tions on a call (that is, a call may have input, output, or input and output parame-
ters). The deployer is responsible for configuring containers to safeguard
interactions between components. A deployer should configure the containers
involved in a call to implement integrity mechanisms either because the call will
traverse open or unprotected networks or because the call will be made between
components that do not trust each other.

User 2 - EJB 2 yes true

User 2 - EJB 3 yes true

Table 9.1 Authorization Decisions (continued)

Call Call Dispatched? isCallerInRole?

PROTECTING MESSAGES 305

DEA2e.book Page 305 Friday, March 8, 2002 12:31 AM
The performance cost associated with applying integrity protection to all
message communication is as much a property of the operational environment as
it is a consequence of the cost of the protection. One way to safeguard the integ-
rity of application messages without unnecessarily limiting the space of opera-
tional environments is to capture application-specific knowledge identifying
which messages must be integrity protected. The place to capture this information
is in the application’s deployment descriptor.

9.4.2 Confidentiality Mechanisms

Confidentiality mechanisms ensure private communication between entities. Privacy
is achieved by encrypting the message contents. Symmetric (or shared secret)
encryption mechanisms generally require less computing resources than asymmetric
(or public key) mechanisms. It is therefore quite common to use an asymmetric
mechanism to secure the exchange of a symmetric encryption key that is then used
to encrypt the message traffic.

The deployer is responsible for configuring containers to apply confidentiality
mechanisms that ensure sensitive information is not disclosed to third parties.
Despite the improved performance of shared secret mechanisms, message encryp-
tion costs are significant. They can have an adverse effect on performance when
confidentiality mechanisms are applied where they are not needed. The applica-
tion assembler should supply the deployer with information on those components
that should be protected for confidentiality. The deployer then configures the cor-
responding containers to employ a confidentiality mechanism whenever interac-
tions with these components occurs over open or unprotected networks. In
addition to applying confidentiality mechanisms where appropriate, the deployer
should configure containers to reject call requests or responses with message
content that should be protected but isn’t. Message integrity may be verified as a
side effect of enforcing confidentiality.

The J2EE platform requires that containers support transport layer integrity and
confidentiality mechanisms based on SSL/TLS so that security properties applied to
communications are established as a side effect of creating a connection.

9.4.3 Identifying Sensitive Components

It is recommended that the application assembler identify the components with
method calls whose parameters or return values should be protected for integrity or
confidentiality. The deployment descriptor is used to convey this information. For

CHAPTER 9 SECURITY306

DEA2e.book Page 306 Friday, March 8, 2002 12:31 AM
enterprise beans, this is done in a description subelement of the target EJB compo-
nent. For servlets and JSP pages, this is done in the transport-guarantee subele-
ment of the user-data-constraint subelement of a security-constraint. In
cases where a component’s interactions with an external resource are known to carry
sensitive information, these sensitivities should be described in the description

subelement of the corresponding resource-ref.

9.4.4 Ensuring Confidentiality of Web Resources

In addition to understanding how to configure Web transport guarantees, it is impor-
tant to understand the properties of HTTP methods and the effects these properties
have when following a link from one Web resource to another. When a resource
contains links to other resources, the nature of the links determines how the protec-
tion context of the current resource affects the protection of requests made to the
linked resources.

When a link is absolute (that is, the URL begins with https:// or http://),
the HTTP client container will ignore the context of the current resource and
access the linked resource based on the nature of the absolute URL. If the URL of
the link begins with https://, a protected transport will be established with the
server before the request is sent. If the URL of the link begins with http://, the
request will be attempted over an insecure transport. When the link is relative, the
HTTP client container will protect an access to a linked resource based on
whether the resource in which the link occurs was protected.

The application developer should consider these link properties most care-
fully when a linked request must carry confidential data back to the server. There
are a few choices available to ensure security in such cases. For example, an appli-
cation developer might choose to use secure absolute links to ensure the transport
protection of requests that carry confidential data. This solves the security
problem at the expense of constraining the application to a very specific naming
environment.

When an application opts for portability and uses relative links, another
option is for the deployer to configure the application so that wherever there is a
confidential interaction from one resource to another, both are deployed with a
confidential transport guarantee. This approach ensures that an HTTP client con-
tainer does not send an unprotected request to a protected resource.

As a related point, the POST method is favored over the GET method for
delivering confidential request data, since data sent via GET appears in browser
location bars and in both client- and server-side logs.

AUDITING 307

DEA2e.book Page 307 Friday, March 8, 2002 12:31 AM
9.5 Auditing

Auditing is the practice of capturing a record of security-related events to hold
users or systems accountable for their actions. The value of auditing is not solely to
determine whether security mechanisms are limiting access to a system. When secu-
rity is breached, it is usually much more important to know who has been allowed
access than who has been denied access. Knowing who has interacted with a system
allows the determination of accountability for a breach of security. Moreover, to use
auditing to evaluate the effective security of a system, there must be a clear under-
standing of what is audited and what is not.

The deployer is responsible for configuring the security mechanisms to be
applied by the enterprise containers. Each configured mechanism may be thought
of as a constraint that the containers will attempt to enforce on interactions
between components. It should be possible for the deployer or system administra-
tor to review the security constraints established for the platform and to associate
an audit behavior with each constraint so that the container will audit one of the
following:

• All evaluations where the constraint was satisfied

• All evaluations where it was not satisfied

• All evaluations independent of outcome

• No evaluations

It is also prudent to audit all changes (resulting from deployment or subse-
quent administration) to the audit configuration or the constraints being enforced
by the platform. Audit records must be protected so that attackers cannot escape
accountability for their actions by expunging incriminating records or changing
their content.

The J2EE programming model shifts the burden of auditing from developers
and integrators to those who are responsible for application deployment and man-
agement. Therefore, although not currently mandated by the J2EE specification, it
is recommended that J2EE containers provide auditing functionality that facili-
tates the evaluation of container-enforced security policy.

CHAPTER 9 SECURITY308

DEA2e.book Page 308 Friday, March 8, 2002 12:31 AM
9.6 Summary

A primary goal of the J2EE platform is to relieve the application developer from the
details of security mechanisms and facilitate the secure deployment of an applica-
tion in diverse environments. The J2EE platform addresses this goal by defining a
clear separation of responsibility among those who develop application compo-
nents, those who assemble components into applications, and those who configure
applications for use in a specific environment. By allowing the component provider
and application assembler to specify the parts of an application that require security,
deployment descriptors provide a means outside of code for the developer to com-
municate these needs to the deployer. They also enable container-specific tools to
give the deployer easier ways to engage the security constraints recommended by
the developer.

An application component provider identifies all of the security dependencies
embedded in a component including:

• The names of all the role names used by the component in calls to
isCallerInRole or isUserInRole

• References to all of the external resources accessed by the component

• References to all the inter-component calls made by the component

An application component provider may also provide a method permission
model, along with information that identifies the sensitivity with respect to
privacy of the information exchanged in particular calls.

An application assembler combines one or more components into an applica-
tion package and then rationalizes the external view of security provided by the
individual components to produce a consistent security view for the application as
a whole. The objective of the application assembler is to provide this information
so that it can inform the actions of a deployer.

A deployer is responsible for taking the security view of the application pro-
vided by the application assembler and using it to secure the application in a spe-
cific operational environment. The deployer uses a platform-specific deployment
tool to map the view provided by the assembler to the policies and mechanisms
that are specific to the operational environment. The security mechanisms config-
ured by the deployer are implemented by containers on behalf of the components
hosted in the containers.

REFERENCES AND RESOURCES 309

DEA2e.book Page 309 Friday, March 8, 2002 12:31 AM
J2EE security mechanisms combine the concepts of container hosting, plus
the declarative specification of application security requirements, with the avail-
ability of application-embedded mechanisms. This provides a powerful model for
secure, interoperable, distributed component computing.

9.7 References and Resources

For additional information on security in the J2EE platform, consult the following:

• The JavaTM 2 Platform, Enterprise Edition, Specification, v1.3. Copyright
2000, Sun Microsystems, Inc. <http://java.sun.com/j2ee>

• Enterprise JavaBeansTM 2.0 Specification. Copyright 2001, Sun
Microsystems, Inc. <http://java.sun.com/products/ejb/docs.html>

• The JavaTM Servlet 2.3 Specification. Copyright 2001, Sun Microsystems, Inc.
<http://jcp.org/aboutJava/communityprocess/first/jsr053/>

• Document formal/01-12-30 (CORBA 2.6 - chapter 26 - Secure
Interoperability). The Object Management Group. Copyright 1997-2002.
<http://www.omg.org/cgi-bin/doc?formal/01-12-30>

• The J2EETM Tutorial, S. Bodoff, D. Green, K. Haase, E. Jendrock, M. Pawlan,
B. Stearns. Copyright 2002, Addison-Wesley.
<http://java.sun.com/j2ee/tutorial>

• INTERNET-DRAFT, The SSL Protocol Version 3.0. A. Freier, P. Karlton, and
P. Kocher, IETF Transport Layer Security Working Group, 1996.
<http://www.netscape.com/eng/ssl3/draft302.txt>

• RFC-2617, HTTP Authentication: Basic and Digest Access Authentication.
J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen,
and L. Stewart. Copyright 1999, The Internet Society.
<http://www.ietf.org/rfc/rfc2617.txt>

• RFC-2818, HTTP Over TLS. E. Rescorla. Copyright 2000, The Internet
Society. <http://www.ietf.org/rfc/rfc2818.txt>

• Applied Cryptography. B. Schneier. Copyright 1996, John Wiley & Sons, Inc.

DEA2e.book Page 310 Friday, March 8, 2002 12:31 AM

DEA2e.book Page 311 Friday, March 8, 2002 12:31 AM
C H A P T E R 10
J2EE Internationalization and
Localization

by Greg Murray

ENTERPRISES are going global. Large organizations are expanding their reach
across continents and cultures. Even small, family-owned companies are finding
new customer bases and supply chain partners in parts of the world that they would
not previously have considered. The Internet provides the communications back-
bone for increasing global interconnectedness.

To operate in a global arena, information systems must address a number of
additional fundamental requirements, including:

• Language requirements—Users of a global application may speak any of
dozens of languages. The relationship between geographic region and lan-
guage spoken is complex; applications targeted at a single country often re-
quire multiple language interfaces. Representation of such quantities as
numbers, dates, times, and currency vary by region.

• Cultural concerns—Some cultures use their traditional calendar instead of or
in addition to the Gregorian calendar. A customer’s interest level in a particular
product may vary by culture. Products and services that are highly sought-after
in one culture may be offensive in another.

• Political differences—Countries vary in customs law and information privacy
requirements. Some governments place limitations on ideas, images, or
speech.
311

CHAPTER 10 J2EE INTERNATIONALIZATION AND LOCALIZATION312

DEA2e.book Page 312 Friday, March 8, 2002 12:31 AM
• Financial considerations—Currencies are not necessarily freely convertible.
Forms of payment may differ; for example, not all customers can be assumed
to have a credit card or purchase order number. Governments have different re-
quirements for customs restrictions, tariffs, and taxes.

• Geographical factors—Product pricing, available shipping modes, and deliv-
ery time may vary by both supply and product delivery location.

These are just a few of the scores of issues that arise when doing business in a
global environment. This chapter presents techniques for creating flexible interna-
tional J2EE applications and explains Java platform internationalization APIs.

10.1 Internationalization Concepts and Terminology

Internationalization terminology is commonly used inconsistently, even within the
internationalization field. This section presents definitions of common international-
ization terms as they are used in the rest of the chapter. For more detail and preci-
sion, see Unicode Technical Report 17 (UTR-17; see the reference listed in Section
10.9 on page 345).

10.1.1 Internationalization, Localization, and Locale

The set of political, cultural, and region-specific elements represented in an appli-
cation is called a locale. Applications should customize data presentation to each
user’s locale. Internationalization, also known as “I18n,” is the process of separating
locale dependencies from an application’s source code. Examples of locale depen-
dencies include messages and user interface labels, character set, encoding, and cur-
rency and time formats. Localization (also called “L10n”) is the process of adapting
an internationalized application to a specific locale. An application must first be
internationalized before it can be localized. Internationalization and localization
make a J2EE application available to a global audience.

Class java.util.Locale represents a locale in the Java 2 Platform, Standard
Edition (J2SE). A Locale object is an identifier in a program that determines such
factors as how numbers, currency, and time should be displayed, and the human
language used to present data in a user interface.

An internationalized J2EE application does not assume a single locale.
Requests from clients arrive with an associated locale, which implies a locale for
the response. A J2EE application often serves requests for many locales simulta-

INTERNATIONALIZATION CONCEPTS AND TERMINOLOGY 313

DEA2e.book Page 313 Friday, March 8, 2002 12:31 AM
neously. Determining the request locale and enforcing an appropriate response
locale are important issues covered in Section 10.3.1 on page 321.

In many projects, application internationalization is an afterthought. But inter-
nationalizing an existing application usually requires a great deal of refactoring.
Because internationalization affects all J2EE application tiers, it is fundamentally
an architectural issue. Internationalization is much easier to achieve if it is inte-
grated into the application design. A project’s design phase should identify and
separate locale dependencies if the application might ever need to support multi-
ple locales.

10.1.1.1 Standard Locale Naming Convention

The J2SE standard class java.util.ResourceBundle (see Section 10.2.1 on page
316) defines a naming convention for locales, which should be used whenever orga-
nizing resources by locale. A locale name consists of international standard 2-
character abbreviations for language (ISO 639) and country (ISO 3166), and an
optional variant, which is a browser- and vendor-specific code for identifying plat-
form differences. The Java platform does not define the possible values and seman-
tics of variants. Any of the three parts of a locale may be empty and are separated by
underscore characters (‘_’). Examples of locale names might include fr (French),
de_CH (Swiss German), and en_US_POSIX (United States English on a POSIX-
compliant platform). For more on this naming convention, see the J2SE javadoc for
class java.util.ResourceBundle.

10.1.2 Character Sets

A character set is a set of graphic, textual symbols, each of which is mapped to a set
of nonnegative integers. For example, ASCII (ANSI X3.4-1968, ISO 646) defines a
character set that is commonly used for representing American English. Japanese
schools and official Japanese government documents use the Joyo Kanji, a fixed set
of 1,945 characters. For the purposes of this chapter, “character set” means “coded
character set,” as defined in UTR-17.

A character set assigns a nonnegative integer, called a code point, to each
character. For example, the ASCII code point for lowercase ‘a’ is 97 (hex 61).

10.1.2.2 ASCII

The most common character set used to represent American English is ASCII
(American Standard Code for Information Interchange). Code points in 7-bit ASCII

CHAPTER 10 J2EE INTERNATIONALIZATION AND LOCALIZATION314

DEA2e.book Page 314 Friday, March 8, 2002 12:31 AM
(called US-ASCII) range from 0 to 127. ASCII contains upper- and lower-case
Roman alphabets, European numerals, punctuation, a set of control codes (non-
graphic code points from decimal 0 to 31), and a few miscellaneous symbols.

Many early Internet protocols were based on 7-bit ASCII, greatly complicat-
ing Web application support of languages other than American English.

10.1.2.3 The 8859 Series

The ISO 8859 character set series was created to overcome some of the limitations
of ASCII. Each ISO 8859 character set may have up to 256 characters. ISO 8859-1
(“Latin-1”) comprises the ASCII character set, plus characters with diacritics
(accents, diaereses, cedillas, circumflexes, and the like), and additional symbols.
The ISO 8859 series defines thirteen character sets (ISO 8859-1 through -10 and
ISO 8859-13 through -15) that can represent texts in dozens of languages.

10.1.2.4 Unicode

Unicode (ISO 10646) defines a standardized, universal character set with 21-bit
code points. Unicode was designed to represent virtually all character sets currently
in use around the world today and can be extended to accommodate additions.
Unicode encompasses alphabetic scripts, ideographic writing systems, and phonetic
syllabaries, and may be rendered in any direction.

The Java programming language internally represents characters and String

objects as 16-bit encoded Unicode (version 3.0 for Java 1.4). Programs written in
the Java programming language can therefore process data in multiple languages,
natively performing localized operations such as string comparison, parsing, and
collation.

Unicode characters in Java program source files may be represented as escape
sequences, using the notation \uXXXX, where XXXX is the character’s 16-bit code
point in hexadecimal. Unicode-escaped strings are very useful when program
source files are not encoded as Unicode. Unicode escape sequences also provide
support for multiple scripts using a single file encoding.

10.1.3 Encodings

An encoding maps a character set’s code points to units of a specific width, and
defines byte serialization and ordering rules. The Unicode 3.0 encoding UTF-
32BE encodes Unicode code points as 32-bit unsigned integers with big-endian

INTERNATIONALIZATION CONCEPTS AND TERMINOLOGY 315

DEA2e.book Page 315 Friday, March 8, 2002 12:31 AM
byte ordering. For the purposes of this chapter, “encoding” means “character
encoding form serialized by character encoding scheme,” as defined by UTR-17.

Many character sets have more than one encoding. For example, Java pro-
grams can represent Japanese character sets using the EUC-JP or Shift-JIS encod-
ings, among others. Each encoding has rules for representing and serializing a
character set.

J2SE package java.io contains classes that support reading and writing char-
acter data streams in various encodings. These classes all have names that end in
Reader (for example, BufferedReader and InputStreamReader) and Writer

(BufferedWriter, PrintWriter).
JSP pages and servlets both use PrintWriter to produce responses, which

automatically performs encoding. Servlets may output binary data with
OutputStream classes, which perform no encoding. An application that uses a
character set that cannot use the default encoding (ISO 8859-1) must explicitly set
a different encoding. A reference to the encoding section of the J2SE documenta-
tion is listed in Section 10.9 on page 345.

10.1.3.5 UTF-8

UTF-8 (Unicode Transformation Format, 8 bit form) is a variable-width character
encoding that encodes 16-bit Unicode characters as one to four 8-bit quantities.
UTF-8 unifies US-ASCII with Unicode. A byte in UTF-8 is equivalent to 7-bit
ASCII if its high-order bit is zero; otherwise, the character comprises a variable
number of bytes. Another encoding, UCS-2, encodes each Unicode character in a
fixed width of 16 bits. Documents encoded in UTF-8 tend to be smaller than docu-
ments encoded in UCS-2, because most characters are encoded in one byte instead
of two.

Many new Web standards specify UTF-8 as their character encoding. UTF-8 is
compatible with the majority of existing Web content and provides access to the
Unicode character set. Current versions of browsers and email clients support UTF-
8. UTF-8 is one of the two required encodings for XML documents (the other is
UTF-16). Encoding internationalized content in UTF-8 is a BluePrints recommen-
dation.

CHAPTER 10 J2EE INTERNATIONALIZATION AND LOCALIZATION316

DEA2e.book Page 316 Friday, March 8, 2002 12:31 AM
10.2 Using J2SE Internationalization APIs in J2EE
Applications

J2SE internationalization APIs include utility classes and interfaces for externaliz-
ing application resources, formatting messages, formatting currency and decimals,
representing dates and times, and collating. The next few sections explain how to
use J2SE internationalization APIs in J2EE applications.

10.2.1 Resource Bundles

J2SE applications store locale-specific resources such as GUI item labels, menu
items, and help text in classes called resource bundles. Resource bundles support
internationalization by separating localized data from the code that uses it. Each
resource bundle class contains localized resources for a particular locale. A resource
bundle is a map of key/value pairs, where the keys are names that are shared across
locales, and the values are resources localized to the resource bundle’s locale. Appli-
cation code references locale-specific resources by key rather than storing them
directly.

Figure 10.1 Resource Bundles Map Key Strings to Localized Resources

For example, Figure 10.1 shows four separate resource bundles for English,
French, German, and Japanese, which map the key YesLabel to localized strings
for “Yes,” “Oui,” “Ja,” and “Hai,” respectively. Application source code would
look up the localized string by name (YesLabel) from the resource bundle corre-
sponding to the desired locale. The resource bundle class names are formed from
the base name of the bundle for the default locale (MyBundle in this example),
plus an optional underscore and locale, using the naming convention described in
Section 10.1.1.1 on page 313.

USING J2SE INTERNATIONALIZATION APIS IN J2EE APPLICATIONS 317

DEA2e.book Page 317 Friday, March 8, 2002 12:31 AM
Subclasses of abstract class java.util.ListResourceBundle keep named
resources in an internal list, while subclasses of
java.util.PropertyResourceBundle store them in external, textual property files.
Application clients or rich clients can load resource bundle classes dynamically
corresponding to the client’s locale.

J2EE applications can also use resource bundles. Code Example 10.1 shows a
very simple resource bundle for two messages in English.

public class WebMessages extends java.util.ListResourceBundle{

public Object [][] getContents(){

return contents;

}

static final Object[][] contents = {

//Messages

{"com.sun.blueprints.messages.welcome",

"Welcome to the Java(TM) Pet Store"},

{"com.sun.messages.come_back_soon",

"Come Back Soon"}

}

}

Code Example 10.1 An English Resource Bundle

Class WebMessages associates the localized English string Welcome to

Java(TM) Pet Store with the name com.sun.blueprints.messages.welcome and
associates the string Come Back Soon with the name
com.sun.messages.come_back_soon. Application code retrieves localized strings
by name from an instance of this class.

Adding support for new languages is as simple as creating another subclass of
ListResourceBundle. Code Example 10.2 shows the source code for a resource
bundle that provides localized Japanese text for one of the messages in Code
Example 10.1.

public class WebMessages_ja extends java.util.ListResourceBundle{

public Object [][] getContents(){

return contents;

}

CHAPTER 10 J2EE INTERNATIONALIZATION AND LOCALIZATION318

DEA2e.book Page 318 Friday, March 8, 2002 12:31 AM
static final Object[][] contents = {

//Messages

{"com.sun.blueprints.messages.welcome",

"\uE382\u88E3\u8186\uE381\u9383\u819D"}

// (Unicode for Japanese phrase)

}

}

Code Example 10.2 A Japanese Resource Bundle

Class WebMessages_ja defines a Japanese localized string for one of the keys
used by class WebMessages. Note that the resource bundle’s class file name ends
with _ja, indicating that it is Japanese. Static method
ResourceBundle.getResource determines the class name of the resource bundle
to load for a locale by appending a suffix to the name of the bundle. The suffix
follows the standard locale naming convention described in Section 10.1.1.1 on
page 313.

Note that a locale-specific resource bundle class need not specify localized
messages for all keys. Class ResourceBundle always uses the most specific local-
ized string it can find, falling back to the class name with no suffix if a string
cannot be found. Because Code Example 10.2 does not define a localized string
for key com.sunw.messages.come_back_soon, a request for the string associated
with that key will return Come Back Soon, the string defined in the default bundle
defined in Code Example 10.3.

Code Example 10.3 shows code, possibly from a servlet or JSP page, that
retrieves a resource bundle for a locale, and uses it to print a localized string.

// Get Japanese resource bundle

ResourceBundle messages = ResourceBundle.getResource("WebMessages",

Locale.JAPAN);

// Get localized string

String greeting =

messages.getString("com.sun.blueprints.messages.welcome");

// Output welcome message

out.println(greeting);

Code Example 10.3 Getting Messages from a Resource Bundle

USING J2SE INTERNATIONALIZATION APIS IN J2EE APPLICATIONS 319

DEA2e.book Page 319 Friday, March 8, 2002 12:31 AM
Remember that an application should deliver content corresponding to the
locale of the client, not the locale of the component container. As previously men-
tioned, UTF-8 encoding is recommended because it can display multiple lan-
guages on a single Web page and has wide browser support.

When a locale is not specified, resource bundles default to the container’s
default locale. The container’s default locale should be set to a value appropriate
for the majority of an application’s users.

10.2.2 Message Formatting

Of course, localized content cannot be limited to static strings retrieved from
resource bundles. The J2SE standard class java.text.MessageFormat provides a
generic way to create concatenated message strings. A MessageFormat object
contains a pattern string with embedded format specifiers. Method
MessageFormat.format formats an array of objects using the format specifiers
embedded in the pattern and returns the result as a StringBuffer.

String pattern = "Order number {0}, line item {1}: this item is out

of stock.";

MessageFormat mf = new MessageFormat(pattern);

Object[] objs = new Object[] {

new Integer(orderNumber),

new Integer(lineNumber)

};

StringBuffer result = new StringBuffer();

String message = mf.format(objs, result, new FieldPosition());

//... use formatted message...

Code Example 10.4 Using MessageFormat to Format a Message

Code Example 10.4 illustrates how to use MessageFormat to format a mes-
sage. The MessageFormat holds the pattern and uses it to format the result string,
substituting formatted objects (Integer objects in this case) in place of format
specifiers {0} and {1}. Code Example 10.4 is internationalized because it retrieves
a format pattern from a resource bundle for the desired locale.

MessageFormat is recommended for formatting system-level messages such as
error or logging strings. While MessageFormat is powerful, it is too programmatic
for creating most internationalized dynamic Web content; instead, consider using

CHAPTER 10 J2EE INTERNATIONALIZATION AND LOCALIZATION320

DEA2e.book Page 320 Friday, March 8, 2002 12:31 AM
JSP pages for that purpose. MessageFormat can be used very effectively to interna-
tionalize JSP custom tags.

10.2.3 Date Formatting

Virtually all enterprise applications store, compare, and perform arithmetic on date
values. Both calendars and textual representations of date and time values vary by
locale. Calendars vary among regions, cultures, and organizations. For example,
many cultures use lunar calendars, and some companies have their own corporate
calendar. Even two locales that use the same calendar may represent times and dates
differently.

The standard class java.util.Date represents date values. Its subclass,
java.sql.Date, represents date values returned from JDBC data sources.

The standard J2SE platform abstract class java.util.Calendar represents
abstract operations on date and time values, including assignment, comparison,
and week day. Concrete subclasses of Calendar (java.util.GregorianCalendar,
for example) implement abstract calendar operations in terms of a specific calen-
dar system.

For textual representation of dates and times, the J2SE platform offers the
standard abstract class java.text.DateFormat (and related classes). DateFormat
provides a locale-sensitive API for parsing, formatting, and normalizing dates.
Concrete subclass java.text.SimpleDateFormat implements date and time value
formatting for all supported locales.

J2EE applications should represent date and time values using class
java.util.Date, interpret them using class Calendar, and parse and format them
using class DateFormat. See The Java Tutorial for examples of how to use these
classes together.

10.2.4 Collation

Collation is the process of ordering text using language- or script-specific rules,
rather than using binary comparison, and is therefore locale-specific. A character set
may have multiple collating sequences, some of which may have to do with proper-
ties of the script. For example, alphabets (like Roman) with a concept of upper- and
lowercase can have multiple collating sequences that treat letter case differently.
Lists of numbers may be ordered numerically or lexically. International character
sets may have diacritics, non-phonetic lexical symbols, ligatures, equivalent charac-
ters (Greek σ and ς, for example), and other features that affect collation.

WEB TIER INTERNATIONALIZATION 321

DEA2e.book Page 321 Friday, March 8, 2002 12:31 AM
The J2SE standard abstract class java.text.Collator and related classes
provide locale-aware collation. Collator is recommended for ordering lists of
items in internationalized J2EE applications. For example, a component that pro-
duces ordered lists of catalog entries could use Collator to place the entries in an
order appropriate to the client’s locale.

Dependence on database collation services is discouraged. Collating in data-
base queries or stored procedures requires complex bean-managed persistence
code. Most databases only support one sort order at a time. Database collation ser-
vices have other limitations and, in any case, are nonportable.

Collator is recommended because its behavior is independent of the source
of the data being ordered. In an enterprise application, the same locale-aware col-
lation code could be used for data retrieved from enterprise beans using container-
managed persistance (CMP), data received from a Web client or Web service, data
retrieved using JDBC, or data accessed by a Connector. Collator gives the devel-
oper more control over the results of the collation. It is also portable, and its data
source independence ensures that collation is consistent throughout the
application.

10.3 Web Tier Internationalization

This section presents some design considerations for internationalizing Web-tier
components.

10.3.1 Tracking Locales and Encodings

An internationalized Web application must be able to determine the encoding of an
incoming request and ensure that the response is properly encoded. This section dis-
cusses locale and encoding management for Web-tier components.

10.3.1.1 Determining HTTP Request Locale and Encoding

Runtime locale determination is simple and automatic in J2SE applications. An
application developer can use J2SE internationalization APIs to set an application’s
locale programmatically.

Locale semantics for J2EE applications are more complex than for J2SE
applications. For example, the system default locale for a Web component is the
Web container’s default locale. In a distributed environment, this default locale
may differ among containers, making the locale dependent on the container ser-

CHAPTER 10 J2EE INTERNATIONALIZATION AND LOCALIZATION322

DEA2e.book Page 322 Friday, March 8, 2002 12:31 AM
vicing the request. Using Locale.getDefault in Web applications is not recom-
mended, because the value returned represents the Web container’s locale, not the
client’s locale.

An internationalized enterprise application’s Web tier must somehow deter-
mine the encoding of incoming request parameters. As explained previously in
this chapter, an encoding defines the relationship between a character set’s code
points and a data stream’s unit size and serialization rules. Correct data interpreta-
tion requires knowing how the data are encoded. Unfortunately, there’s no stan-
dard way to determine HTTP request parameter encoding. An HTML browser
encodes each request using the encoding of the page that was the source of the
request, but that knowledge is only useful if the original page’s encoding is
known.

There are several approaches to determining and tracking HTTP request
locale:

• Deduce encoding from the Accept-language HTTP header—The Accept-

language header does not unambiguously indicate request encoding, but it can
provide an appropriate locale for content generation. The method
ServletRequest.getLocale returns a preferred Locale that the Web container
chooses based on the Accept-language header value. The method
ServletRequest.getLocales returns an Enumeration of Locale objects that
the client will accept, based on the contents of multiple Accept-language head-
er values. A Web component can use getLocales to select the most appropriate
locale from among the available options.

On the other hand, however, this approach is unreliable because there is no
unique relationship between the value of the Accept-language header and the
request encoding. Most character sets may be represented in a variety of en-
codings. The Accept-language value, even if accurate, only narrows the range
of possible encodings. For these reasons, relying on Accept-language for de-
termining request encoding is discouraged.

HTTP defines two other relevant Accept- headers. Accept-charset is a list of
character sets the browser will accept, which can be useful in choosing a re-
sponse encoding. Accept-encoding is a document’s so-called “content cod-
ing,” usually a type of data compression. Neither of these headers indicates
request encoding. See RFC 2616 listed in Section 10.9 on page 345 for details.

• Provide separate application entry points for different locales—In the Web
tier, one servlet may be mapped to several URLs, each corresponding to a par-

WEB TIER INTERNATIONALIZATION 323

DEA2e.book Page 323 Friday, March 8, 2002 12:31 AM
ticular locale. The URL might even contain the locale identifier; for example,
http://j2eeserver/j2eeapp/login/en_US for United States English, and
http://j2eeserver/j2eeapp/login/de_CH, for Swiss German. This approach
is especially appropriate for applications that heavily use manually-localized
JSP pages, because such pages are typically already separated by the URL
namespace.

• Define an application-wide encoding—If every Web component in an appli-
cation transmits all of its pages in the same encoding, then requests from those
pages will always be in that encoding. This approach simplifies design, but has
the drawback that any component that does not set the encoding correctly will
not work properly. This drawback can be eliminated using a servlet filter; see
the next section for a description. As described previously in this chapter,
UTF-8 encoding unifies ASCII with Unicode. Standardizing on UTF-8 is the
recommended approach because it provides the broadest coverage of character
sets.

The method ServletRequest.setCharacterEncoding (Java Servlet specifica-
tion version 2.3 and above only) overrides a servlet request’s default encoding
with a given encoding, which thereafter is used to interpret request parameters.
This method must be called before any data is retrieved from the request object.

In summary, the BluePrints recommendation is to standardize on a single
encoding, preferably UTF-8, to provide consistent request encoding, efficient data
transmission, broad character set coverage, and wide browser support. When a
consistent encoding cannot be used (because of noncompliant browsers, for exam-
ple), consider storing locale and encoding in session state, or use separate URLs
for each locale or encoding as described in the next section.

10.3.1.2 Storing Locale and Encoding at Runtime

Instead of determining locale and encoding for each request, locale can be stored for
use by subsequent requests. There are several ways to accomplish this:

• Store locale and encoding in hidden variables or parameters—The encod-
ing of a page could be stored in hidden variables in forms or query string pa-
rameters, so every request would contain an indication of the request parameter
encoding. This approach suffers from a few problems. Additional parameters
and hidden form variables complicate page creation. Accurately changing the
encoding of a page implies changing all of the parameters or form variables,

CHAPTER 10 J2EE INTERNATIONALIZATION AND LOCALIZATION324

DEA2e.book Page 324 Friday, March 8, 2002 12:31 AM
which complicates maintenance. Parameters or hidden form variables are ap-
propriate to indicate request encoding only when both the application cannot
be standardized on a single encoding, and it doesn’t use stateful components.

• Store encoding as session state—A stateful server-side component (a session
bean or servlet using HttpSession) can maintain the encoding of generated
content in a session attribute. This approach is recommended for applications
that must use both multiple encodings and stateful components.

• Store the locale and encoding as a user preference—Most enterprise appli-
cations store some user profile information—sometimes only a password. User
profile parameters can be used to localize all requests following login. User
preference information may be kept in a client-side cookie, stored in a database
and accessed with JDBC, stored in Web-tier session state, or accessed as a user
profile entity bean.

10.3.1.3 Setting HTTP Response Locale and Encoding

Response encoding of JSP pages and servlets determines both the format of charac-
ters in the response and the request encoding of any subsequent request from the
served page.

An HTTP server indicates content encoding using part of the Content-type

HTTP header. This header’s value is either TYPE or TYPE;charset=CHARSET where
TYPE is the content type (RFC 1049) and CHARSET is the name of the encoding as
registered with the Internet Assigned Names Authority (IANA). The default value
for TYPE is text/html; the default value for CHARSET is ISO-8859-1. A reference to
the IANA registry of values for charset is listed in Section 10.9 on page 345.

There are two ways to set encoding of a servlet’s HTTP response:

• Use ServletResponse.setContentType—Use this method to manually set the
entire Content-type header. Include the encoding as the value of charset; for
example:

response.setContentType("text/html;charset=Shift_JIS");

• Use ServletResponse.setLocale—Use this method to set HTTP headers ap-
propriate for the given locale, including the charset= portion of the Content-

type header.

WEB TIER INTERNATIONALIZATION 325

DEA2e.book Page 325 Friday, March 8, 2002 12:31 AM
Set the locale or content type before calling Servlet.getWriter to ensure that
the resulting Writer is configured for the correct encoding.

Two attributes of a JSP page’s page directive can control encoding:

• Use the contentType attribute—Use content type and charset, as for
ServletResponse.setContentType.

• Use the pageEncoding attribute—(JSP pages version 1.2 and above only) Use
just the value of charset.

A JSP container may issue a runtime error if the encoding for the page is inap-
propriate for the content type. It may produce a translation-time error when a JSP
page specifies an unsupported encoding.

The content type and encoding of a JSP page is fixed at page translation time
when they are set using a directive. Use either a custom tag or a servlet to set
encoding at runtime.

An application can use a servlet filter to set response encoding to a single
value before a servlet or JSP page receives the request. This technique provides a
single point of control for enforcing standardized encoding and ensures that
encoding is correct before a servlet uses its response object. The sample applica-
tion enforces response encoding with a servlet filter. The servlet filter can also
serve as a guard, logging an error message if any client makes a request using an
unsupported encoding.

Automatic selection of language, character set, and encoding selection make
things easy for users. But it’s important always to provide a way for users to
change languages manually as well. Page headers or footers are a good place for
hyperlinks or dropdown boxes for manual language selection. When you offer
users a choice of languages, the name of each language should be in the language
to be chosen, rather than the language of the current page.

10.3.2 Presentation Component Design

Internationalization and localization are important concerns when designing presen-
tation components such as JSP pages, JavaBeans helper components, and custom
tags. Examples of localizable Web-tier components include:

• JSP page fragments included dynamically in a response based on locale

• Helper JavaBeans components that customize their behavior to a locale

CHAPTER 10 J2EE INTERNATIONALIZATION AND LOCALIZATION326

DEA2e.book Page 326 Friday, March 8, 2002 12:31 AM
• Custom tags that order lists of data using a collating sequence appropriate for
a locale

• Custom tags that customize database requests to a specified locale

• Custom tags that use locale to format numbers, dates, currency, percentages,
and so on

All of these components may use the J2SE internationalization APIs. Remem-
ber always to consider internationalization when designing presentation
components.

10.3.2.3.1 Example

This example from the sample application presents a localizable custom tag that dis-
plays currency values in a format appropriate for a locale.

The sample application includes a presentation component called a list tag,
which formats a list of items from a java.util.Iterator. The list tag evaluates
and outputs its body text for each value the iterator returns. Each value is a Java-
Beans component that exposes its values as get and set property accessors.

The example presentation component, a listItem tag, formats and displays
the current item within a list tag’s body text. A sample usage of this tag looks
like this:

<waf:listItem property="unitCost" formatText="currency"

locale="ja_JP" precision="0"/>

The tag’s attributes control its behavior in the following ways:

• The tag’s property attribute identifies the JavaBeans property to format from
the current iterator value. The listItem tag retrieves the value to display by
calling the current item’s getUnitCost method. This method is the get property
accessor as defined by the JavaBeans naming convention.

• The listItem tag’s formatText attribute indicates how to format the item. In
the example above, the tag formats the value as currency; it can also format
decimals and percentages.

• The precision attribute indicates how many zeroes appear after the decimal.
In this case, the currency is Yen, which requires no decimal part, so there are
0 digits after the decimal point.

WEB TIER INTERNATIONALIZATION 327

DEA2e.book Page 327 Friday, March 8, 2002 12:31 AM
• Finally, the tag formats the item according to the value of the locale attribute.
The locale name follows the standard convention described in Section 10.1.1.1
on page 313; in the example, the locale is ja_JP, meaning Japanese (ja) in
Japan (JP). The tag handler code maps this string to the corresponding Locale

object. The tag handler code uses the standard J2SE class CurrencyFormat to
format the value, complete with Yen sign.

Another example usage of the listItem tag might look like this:

<waf:listItem property="unitCost" formatText="currency"

locale="en_US" precision="2"/>

The locale in this example is en_US, so the CurrencyFormatter will use appro-
priate localization for United States English. Because this currency amount is in
dollars, the precision is two (to display cents).

Note that this tag does not actually convert currency between Yen and dollars.
Rather, it simply formats the value that getUnitCost returns for the specified
locale.

Components other than custom tags can also be internationalized. For exam-
ple, unitCost in the above example is a property of a JavaBean component, which
itself could be localized. The component could return one price, in Yen, for locale
ja_JP, and a different price, in dollars, for locale en_US. In such a case, the Java-
Beans component (part of the application MVC model) would produce a unit cost
appropriate to the locale, while the presentation tag (part of the application MVC
view) would format the value in a way appropriate for the locale. (This scenario is
hypothetical, as the sample application does not provide this functionality in quite
this way.)

The sample application contains other examples of locale-aware presentation
components. Localizable presentation components greatly simplify international-
ization.

10.3.3 Internationalizing and Localizing JSP Pages

Because locale is primarily about how to present data, localization is most appropri-
ately implemented in MVC views. In the Web tier, MVC views are usually JSP
pages. J2EE Web applications should localize content in the Web tier with JSP
pages.

Two common approaches exist for localizing JSP pages: creating JSP pages
that can be localized with resource bundles or maintaining separate JSP pages for

CHAPTER 10 J2EE INTERNATIONALIZATION AND LOCALIZATION328

DEA2e.book Page 328 Friday, March 8, 2002 12:31 AM
each locale. Each approach has strengths and drawbacks. The next two sections
discuss the tradeoffs between these two options.

Use separate JSP pages for each locale when content structure and display
logic differ greatly between locales or when messages depend on the target locale.
Resource bundles are recommended for error and logging messages (see Section
10.7 on page 341), and when content varies between locales only in data values
and not in structure.

10.3.3.4 Localizing JSP Pages with Resource Bundles

A common way to localize JSP pages is to assemble chunks of localized text using
locale-aware custom tags. Each time the page is served, the custom tags select text
from a resource bundle for the current locale.

Figure 10.2 Localizing JSP Pages with Resource Bundles

WEB TIER INTERNATIONALIZATION 329

DEA2e.book Page 329 Friday, March 8, 2002 12:31 AM
Figure 10.2 shows a single internationalized JSP page that is localized with
resource bundles for several locales. Benefits of this approach include:

• Easier maintenance—A single JSP page is the source file for a particular
screen in all locales. A modification to the JSP page changes the dynamic con-
tent generated for all locales.

• Consistent page structure—Because the source code for a screen is shared
between locales, the page maintains the same structure in all locales, changing
only in data values, message text, and language displayed.

• Easy extensibility—A new locale can be added by simply defining a new re-
source bundle for the locale.

The consistency provided by this approach is also a major drawback. While
changing the content of this page is easy, customizing its structure to locales is
harder, because one JSP page produces content for all locales.

This approach shares a single JSP page across locales, so the page encoding
must be compatible with the encodings of all application character sets. The JSP
directive setContentType specifies the content type and the encoding for the page
at page translation time, so all pages produced using this directive must use the
same encoding. For reasons explained earlier in this chapter, standardizing on
UTF-8 encoding is recommended.

The recommended way to implement a single JSP page customized to multi-
ple locales is to use resource bundles. Access resource bundles from custom tags
in the pages instead of using resource bundles from scriptlet or expression code.
Custom tags improve the readability and maintainability of JSP pages, and reduce
duplicated code.

CHAPTER 10 J2EE INTERNATIONALIZATION AND LOCALIZATION330

DEA2e.book Page 330 Friday, March 8, 2002 12:31 AM
10.3.3.5 Locale-Specific JSP Pages

Another approach to localizing JSP pages is to provide a separate JSP page for each
locale.

Figure 10.3 Localizing by Creating Separate JSP Pages for Each Locale

Figure 10.3 shows a directory tree of an internationalized JSP page,
index.jsp. There are actually four separate versions of the file, each in a separate
directory in the server’s namespace. In this approach, a servlet or servlet filter for-
wards each request for a JSP page to the appropriate file based on the requesting
client’s locale. The names of the directories that separate the different file versions
use the standard resource bundle suffix naming convention. An alternative is to
use file naming conventions instead of directories. For example, the name of a file
for the default locale is index.jsp, the Japan Japanese localized JSP file would be
called index_ja_JP.jsp, the Swiss German file would be index_de_CH.jsp, and
so on. While this approach will work, applications with a large number of files
and locales might easily become difficult to manage.

Grouping JSP pages, static pages, and other resources such as graphics files in
one directory per locale is a BluePrints best practice. Note that JSP pages can be

WEB TIER INTERNATIONALIZATION 331

DEA2e.book Page 331 Friday, March 8, 2002 12:31 AM
localized selectively with this scheme. The logic for determining which file to
forward to is in a dispatching servlet or servlet filter, which can implement the
same naming convention scheme as do resource bundles. The forwarding compo-
nent can always choose the most specific file available and use a default file (with
no localization suffix) as a fallback.

The page-per-locale approach has the following benefits:

• Greater customizability—Using resource bundles to customize a single JSP
page results in pages whose structure is essentially the same for all locales.
Using one JSP page per locale provides maximum customizability of the
content for a locale, because customizations are not limited to the contents of
a resource bundle. As a result, the page-per-locale approach is prefereable
when content differs substantially between locales.

• Source clarity—All of the content for a locale appears in a single file (the JSP
file for the locale) instead of being separated between a JSP page file with
some structural tags, and a properties file or resource bundle class containing
named strings.

At the same time, this approach has some drawbacks. Maintaining a consis-
tent look-and-feel between locales is more difficult with separate JSP pages than
with resource bundles. Separate files must be created and maintained consistently
for several locales. This means more maintenance than does the resource bundle
approach.

The Web-tier framework and tools you select for creating your application
may influence your decision in how to support internationalized content.

The sample application uses a templating mechanism, providing both struc-
tural consistency between locales and the flexibility of page-per-locale localiza-
tion. The templating mechanism uses an XML “screen definitions file” for each
locale to assemble localized JSP pages into a single page. The screen definitions
file for a locale specifies a template file, and maps localized JSP pages to symbolic
names such as “header,” “footer,” and so on. The template file defines the overall
structure for a page, and uses custom tags to include localized JSP pages, which it
references by symbolic name. Because the screen definitions file specifies the
template, both page layout and “look and feel” can be unified across locales (by
using a single template) or customized for particular locales (by using separate
templates).

CHAPTER 10 J2EE INTERNATIONALIZATION AND LOCALIZATION332

DEA2e.book Page 332 Friday, March 8, 2002 12:31 AM
Regardless of which option you choose, setting the JSP page response encod-
ing correctly is crucial. The sample application standardizes all page encoding to
UTF-8, and enforces this encoding with a servlet filter for all JSP pages it serves.

10.4 EIS Tier Internationalization

Because data in an enterprise information system can vary by locale, localization
issues can reach all the way into the EIS tier. This section discusses some issues
regarding persistent data and schema in databases.

10.4.1 Persistent Localized Data

A J2EE application requires internationalization support in its persistence layer as
well as in component source code. Persistence layer design should always address
internationalization concerns.

Both container-managed persistence and bean-managed persistence require
that an application’s JDBC driver and back-end data store support all character
sets and all encodings used to represent persistent data. UTF-8 encoding is
advised because it is widely supported by JDBC drivers and databases, and sup-
ports many character sets.

10.4.1.0.1 Value Conversion, Value Representation, and Information Loss

Uniform value representations in a database simplify database access and applica-
tion code, but improper localization can cause subtle flaws in application logic.
Value representations in a database should be as independent of locale as possible, if
the conversion from the original representation can be performed without informa-
tion loss. Where such a conversion cannot be performed, a data value should include
a locale and unit designator. The key distinction to make is between the data value,
which usually should not be modified, and the way that the value is represented,
which usually should be uniform for all database records.

The following examples illustrate the difference between a data value and the
way the value is represented:

• Fixed decimal numbers—English-speaking countries often format decimal
numbers as 1,234.56, whereas people in many other countries format the same
number as 1.234,56. Rather than maintain the original punctuation, a database
attribute for such a value should be a coded decimal type that can later be pre-

EIS TIER INTERNATIONALIZATION 333

DEA2e.book Page 333 Friday, March 8, 2002 12:31 AM
sented in any format or encoding. Where there is a business reason to do so, a
locale should be stored along with the data value.

• Strings—The sequence of characters in a string, not the string’s encoding, de-
termines the string’s value: For example, any number of different byte se-
quences can represent the string abc. Saving strings in a database in a variety
of encodings, even if the encoding is stored with the value, can complicate pro-
cessing the strings. The recommended approach for persisting strings received
in multiple encodings is to use a universal encoding such as UTF-8 as the da-
tabase attribute type, and convert from the received encoding to the database
encoding before storing the value. The string can later be converted to other
encodings for display.

Where there is a business reason to do so, store a string along with its original
encoding and/or locale, so that the original string can be recovered by encoding
conversion. For example, a multilingual Customer Relationship Management
(CRM) application might use a stored locale to route each customer request to
a service representative who speaks that customer’s language. The application
could use the stored encoding to encode the response to the customer.

• Currency—It is impossible to overemphasize the importance of properly han-
dling currency values. Your organization’s business rules, not the user’s lo-
cale, determine the values of quantities such as prices in a catalog. If your
application quotes a price in Yen to a Japanese customer, for example, the ap-
plication should persist the value in Yen, not a value converted to U.S. dollars.
(If business rules mandate conversion to dollars at the time of the quote, then
the value should be displayed in dollars to avoid misleading the customer.) The
application must always record currency values denominated in the currency
mandated by business rules. When currency is converted, an audit trail often
also requires storing the conversion rate and the value and denomination be-
fore conversion. An application’s handling of currency values should always
be checked by someone who understands the business’s accounting rules. Ex-
tensive testing with audits can also uncover currency conversion errors. The
J2SE platform version 1.4 class java.util.Currency represents ISO 4217 cur-
rency codes, and can be used for currency formatting; see the J2SE javadoc
documentation for details.

CHAPTER 10 J2EE INTERNATIONALIZATION AND LOCALIZATION334

DEA2e.book Page 334 Friday, March 8, 2002 12:31 AM
• Physical properties and dimensions—Some value conversions for physical
properties can cause information loss, others do not. For example, the conver-
sion formula from degrees Fahrenheit to degrees Celsius

can introduce rounding errors that may or may not be significant for your ap-
plication. Whether to store the original value with a dimension or to store a
converted value with an implied dimension depends on the application’s pre-
cision requirements.

• Time and date—Some global distributed applications standardize on a univer-
sal time coordinate (UTC) for all representations of dates and times, plus (op-
tionally) an indication of time zone. Because UTC can be determined from
local date and time for any geographic point, no data is lost in the conversion.
As with currency, this determination depends on the organization’s business
rules.

There are many more situations where data value and data representation may
vary by locale. Uniform value representation in a database simplifies application
coding, but should never cause information loss.

10.4.2 Internationalizing Database Schema

The effect of internationalization on an application’s data model is one of the more
important reasons to consider internationalization in an application’s design phase.
Many internationalized data sets cannot be represented reasonably as resource
bundles or as static JSP pages, either because the data set is too large or the data
change too fast, or both. Such data sets are usually stored in and accessed from data-
bases.

Data model entities often include locale-dependent attributes such as descrip-
tive text, images, or resource references. In an internationalized application, an
entity has a one-to-many relationship with these items. For example, each item in
a non-internationalized catalog has a single descriptive text string, whereas an
internationalized catalog item requires a descriptive text string for each supported
locale.

°C
5 °F 32–()

9
--------------------------=

EIS TIER INTERNATIONALIZATION 335

DEA2e.book Page 335 Friday, March 8, 2002 12:31 AM
Consider the example of internationalizing the description of a catalog item.
Three alternative ways to model an internationalized attribute appear in Figure
10.4.

Figure 10.4 Internationalized Attribute Modeling Alternatives

One way to internationalize an attribute is to add a new attribute to the entity
for every supported locale. The leftmost example in Figure 10.4 shows an item
table with a description column for each locale. But that approach would require
both code changes and the addition of a column to every internationalized table
each time a new locale is added.

Another approach is to place the attribute in a separate entity for each locale.
The middle example in Figure 10.4 shows an item table that has no descriptive
text but joins to a separate catalog description table for each locale. But this
approach still requires schema and code modifications to add a locale to the appli-
cation.

The third option (recommended) is to include locale in the data model,
making it part of the identity of the entity representing the localized resource. The
rightmost example in Figure 10.4 shows an Item table that joins with an
ItemDetails table. The primary key of the ItemDetails table includes both the ID
of the item being described and the locale for the description and other resources.
The application code for this approach contains no hard-coded locale information,
so adding a new locale is as simple as adding localized data to the table.

The sample application models internationalize data in exactly this way.
Figure 10.5 shows a part of the sample application’s data model. It contains a hier-
archical categorization of items by product, and products by category. The cate-

CHAPTER 10 J2EE INTERNATIONALIZATION AND LOCALIZATION336

DEA2e.book Page 336 Friday, March 8, 2002 12:31 AM
gory, product, and item tables each have an associated detail table that contains
locale-specific data. Application code retrieves localized resources from this table,
looking up descriptive text, images, names, and so on, by both locale and ID.

Figure 10.5 Internationalized Catalog Schema

Note that, in these tables, details tables contain all localized data. The primary
key (that is, the identity) of all details tables is the locale and an ID. A properly-
designed schema will support future language additions with no changes to either
code or database schema. Adding a new locale in this design is as simple as
adding new localized data to the details tables. An internationalized database
schema requires more up-front design work, but provides a great deal of flexibility
for supporting localized content later on.

10.5 Internationalized Application Design

Previous sections discussed internationalization issues by tier. This section covers
some design techniques that are useful across tiers in internationalized, distributed
applications.

INTERNATIONALIZING APPLICATIONS WITH XML 337

DEA2e.book Page 337 Friday, March 8, 2002 12:31 AM
10.6 Internationalizing Applications with XML

There are a variety of ways to internationalize J2EE applications:

• Use resource bundles in code—for programmatic control of internationaliza-
tion; see Section 10.2.1 on page 316.

• Use custom tags—for JSP pages that vary by locale only in data values; see
Section 10.3.3.4 on page 328.

• Use a separate JSP page for each locale—for pages that have a different
structure for each locale; see Section 10.3.3.5 on page 330.

• Transform XML with XSLT—to internationalize XML content.

An application may use any or all of these techniques. This section covers the
final option, using XML and XSLT to localize and communicate locale within and
between applications.

10.6.1 Generating Localized Dynamic Content with XSLT

One flexible way to create internationalized content is to use locale-specific XSLT
stylesheets to style model data that are represented as XML. For example, an enter-
prise bean might use JMS to asynchronously send localized XHTML to a user by
email.

XSL stylesheets are very effective for creating customized, dynamic struc-
tured content in any application tier. The application component (JSP page, serv-
let, or enterprise bean) can create XML that represents localized model data that
are the results of a service request. An XSL styling component can then produce
localized content, inserting and styling model data from the XML document. The
name of the stylesheet that performs the localization is based on the requested
locale, which is encoded in the XML itself. Localizations for new locales can be
created by simply generating model data for the new locale, and then styling that
data with a new XSL stylesheet. This approach cleanly separates business logic
(the XML data) from presentation (the template text in the stylesheets).

An example of this approach, including a description of a way to communi-
cate locale among decoupled application components, appears in Section 10.6.3
on page 338).

CHAPTER 10 J2EE INTERNATIONALIZATION AND LOCALIZATION338

DEA2e.book Page 338 Friday, March 8, 2002 12:31 AM
10.6.2 Communicating Locale within an Application

The Java programming language represents values of type String, StringBuffer,
and Character as Unicode. As a result, enterprise bean methods that use these types
consistently preserve international character values, including method invocations
through EJB local and remote interfaces.

Enterprise bean business method signatures may include locale information
when business logic depends on locale or where the data returned by a bean method
is localized. Examples of enterprise beans whose behavior may be locale-dependent
include components for tax calculation or shipping, or components that deal directly
with external systems such as Web services or clients. A catalog enterprise bean
might include method signatures with locale to indicate the language for viewing
the catalog’s entries.

Placing locale in session state can greatly simplify code localization. Instead
of including a Locale argument in every business method signature, consider
placing the current Locale in session state, either as an HttpSession attribute (for
Web-only applications) or by using a stateful session bean (for applications using
enterprise beans). A Locale stored in session state can be determined once, early
in the session, and then used by all components for the remainder of the session.

10.6.3 Communicating Locale among Applications

Most large organizations have not one, but several mission-critical business applica-
tions. Seldom are these applications integrated “out of the box.” The art of integrat-
ing disparate enterprise applications to work together as a whole is called Enterprise
Application Integration (EAI).

A currently-popular EAI strategy uses messaging to link together coarse-
grained, loosely-coupled applications. For example, Web services use Internet
protocols and data formats (often HTTP and XML) to send and receive messages
that are formatted as XML documents.

When one internationalized enterprise application requests a service from
another application, the requesting application must somehow indicate the locale
of the request, so that the data encoded in the request can be properly interpreted.
J2EE applications often communicate among themselves and with other IT
systems using XML message passing. In particular, EJB components may com-
municate with external applications using JMS to send and receive payloads of
XML messages. Web-tier components may provide XML Web services via HTTP
to end users or to other information systems. Each of these scenarios requires a
way to indicate locale.

INTERNATIONALIZING APPLICATIONS WITH XML 339

DEA2e.book Page 339 Friday, March 8, 2002 12:31 AM
Applications that send XML messages should encode the locale of the
request, the requested locale of the response, or both, as strings in an element of
the XML message. The naming conventions used for resource bundles provide a
useful and widely-understood way to represent a locale as a string.

Code Example 10.1 shows a sample XML message representing an invoice
localized for the United States English locale. As in this case, the locale of the
request and the response are usually the same, so only a single locale element is
necessary.

<?xml version="1.0" encoding="UTF-8"?>

<invoice>

<orderid>1234</orderid>

<locale>en_US</locale>

</invoice>

Code Example 10.1 Sample XML Message with United States English Locale

The same message with a Japanese locale appears in Code Example 10.2
below.

<?xml version="1.0" encoding="UTF-8"?>

<invoice>

<orderid>1234</orderid>

<locale>ja_JP</locale>

</invoice>

Code Example 10.2 An XML Message with Japanese Locale

Note that the string used to represent the locale follows the naming conven-
tion for resource bundle class name suffixes. Choose a universal encoding such as

CHAPTER 10 J2EE INTERNATIONALIZATION AND LOCALIZATION340

DEA2e.book Page 340 Friday, March 8, 2002 12:31 AM
UTF-8 for all such XML messages, and be sure to include the document encoding
in the XML declaration, as the code examples show.

Figure 10.6 Communicating Localized Content

A message receiver may use the locale encoded in the request to localize the
content of an XML message it receives. The sample application contains a multi-
lingual mailer application that transforms XML messages into localized emails to
customers. A sample scenario appears in Figure 10.6 above. In this diagram, an
EJB component in Application 1 sends an XML message via JMS to a multilin-
gual mailer application. The mailer application receives JMS messages (using a
message-driven bean), localizes the message contents, and sends the localized
contents as emails to users.

The message-driven bean in the mailer application receives and merges the
XML payload (invoice.xml) of each JMS message with a stylesheet containing
template text. The bean selects an XSL stylesheet based on the incoming message
type (inv in this case) and the requested locale. The stylesheet contains XSL tem-
plate rules that create email body text by inserting values from the XML docu-
ment into localized template text. The result of the XSL transformation is an email
message localized to the locale requested by the incoming message.

This flexible solution provides a simple way to extend the mailer application
for new locales. To add a new locale, a developer need only generate localized

LOCALIZING ERROR AND LOGGING MESSAGES 341

DEA2e.book Page 341 Friday, March 8, 2002 12:31 AM
values from the model (as XML), create an XSL stylesheet for the new locale, and
follow the stylesheet naming convention. The mailer application will correctly
style incoming messages for the new locale.

Notice that this design maintains MVC separation: The data sent in the XML
message is model data, the XSL stylesheet generates the view (the “view” is the
email being sent to the customer), and the bean acts as a controller that selects and
assembles the view. The stylesheet in this design acts much like a JSP page, out-
putting template text with dynamic data values matched from the XML document.
Yet this example does not use the Web tier at all: It occurs entirely in the EJB tier
and in message-oriented middleware.

MVC separation is especially important for enterprise application integration,
because enterprise applications communicate most effectively at the level of data
and application model. Legacy interface engines that rely on “screen scraping”
exist solely to simulate an application model by interacting with a view. The
legacy interface layer would be entirely unnecessary if the model were available
directly as a service.

The example presented above shows just one way that locale that is communi-
cated between applications may be used to produce localized content.

10.7 Localizing Error and Logging Messages

Error messages provide both users and system administrators with information
about exceptional conditions. Localizing error messages and logging messages is an
important part of localizing an application.

10.7.1 Client Messages and Application Exceptions

An application’s presentation layer should localize messages to clients. Subclasses
of java.lang.Exception are recommended for communicating errors between
tiers. In a distributed environment, such exception classes must be serializable so
that they can move across tier boundaries.

In general, exception classes should not contain localized messages; instead,
they should contain information detailing the error. The presentation tier can use
the error information to create an error message suitable for the client. JSP pages
are a useful mechanism for formatting error messages for Web tier clients. For
example, consider a message that creation of a new user account failed because
the user ID already exists. A JSP page could deliver content appropriate to the
user locale, getting only the user identifier from the exception object.

CHAPTER 10 J2EE INTERNATIONALIZATION AND LOCALIZATION342

DEA2e.book Page 342 Friday, March 8, 2002 12:31 AM
This section explains existing mechanisms for Web-tier error reporting, and
then provides general guidelines for using them in an internationalized design.

10.7.1.0.1 JSP Pages Error Mechanism

JSP pages have defined behavior for handling request-time errors. Server behavior
for errors that occur at page compilation or deployment time is not specified, and is
therefore implementation dependent.

Uncaught JSP page exceptions are forwarded to the JSP page’s error page, if
one is defined. An error page informs the user that an error has occurred. JSP page
errorPage defines the URL for the page to display when a JSP page produces
errors; for example:

<%@ page language=”java” errorPage=”errorPages/userExists.jsp” %>

When the JSP page catches an unchecked exception, it creates a new
ServletRequest parameter called javax.servlet.jsp.jspException, which con-
tains the exception object. The error page may use this request parameter to
format an error message.

The error page must include an isErrorPage directive, like this:

<%@ page language=”java” isErrorPage=”true” %>

The isErrorPage directive causes the implicit scripting variable exception to
be initialized to the exception object thrown by the original JSP page. The page
may then format the message using the data encoded in the exception. An error
page that could potentially receive more than one type of exception would need to
include some sort of logic, best implemented in a custom tag, to deliver the correct
error message.

10.7.1.0.2 Servlet Error Mechanism

A servlet may indicate an error either by throwing an exception, or by calling
ServletResponse.sendError with an HTTP error code argument. The servlet con-
tainer’s default behavior for either case is to serve an implementation-specific error
page. Application assemblers or deployers can use servlet deployment descriptor
entry <error-page> to specify custom error pages. Errors may be classified either
by fully-specified exception class name or by HTTP error code. Servlets should
throw only exceptions that are subclasses of RuntimeException,
ServletException, or IOException, none of which should be used for application-

LOCALIZING ERROR AND LOGGING MESSAGES 343

DEA2e.book Page 343 Friday, March 8, 2002 12:31 AM
level exceptions from EJB components. The servlet container error page mechanism
should be used only for reporting Web-tier application exceptions.

10.7.1.0.3 Localizing Error Messages

Localization is primarily about presentation, not business logic. The BluePrints rec-
ommendation is to localize error messages in the code that generates a response to a
client. For example, JSP pages and servlets in the Web tier can generate localized
dynamic error messages for HTML browsers or XML-based rich clients. Applica-
tion clients can localize data on the server or the client, but in either case, localiza-
tion should occur in presentation code.

An internationalized MVC controller can easily localize error messages. The
controller can catch all exceptions thrown from the Web tier and route them to the
appropriate error page based on the name of the exception class. The controller
looks up the error page URL in an XML-based exception map, which maps
exception class type to error pages by locale. Application component providers,
assemblers, or deployers would use the exception map to define localized error
pages for application exceptions. Code Example 10.1 below provides a hypotheti-
cal example of how such a map might look.

<ExceptionMap>

 <Exception type="EjbAppExceptions.UserExistsException">

 <ErrorPage locale="en">/jsp/UserExists.jsp</ErrorPage>

 <ErrorPage locale="sp">/jsp/sp/UserExists.jsp</ErrorPage>

 <!-- Add pages for other locales here -->

 </Exception>

 <!-- Add additional exception mappings -->

</ExceptionMap>

Code Example 10.1 Sample Localizing Exception Map for Web-Tier Controller

A locale-aware Web controller would catch application exceptions from the
application’s business layer (often implemented by the EJB tier), get the class
name of the thrown exception (using getClass.getName), look up the error JSP
page in the exception map, and forward the request to the corresponding page
(using RequestDispatcher.forward). As described above, the servlet container
already offers a way to forward requests to error pages based on uncaught excep-

CHAPTER 10 J2EE INTERNATIONALIZATION AND LOCALIZATION344

DEA2e.book Page 344 Friday, March 8, 2002 12:31 AM
tions. The approach presented here also provides localization and handles error
messages for business-layer application exceptions.

Looking again at Code Example 10.1, note that the controller forwards an
exception’s contents to an error page corresponding to the user’s locale. An indi-
vidual error JSP page in this example formats the contents of one application
exception for a particular locale. The data in the exception are not localized: The
localization is handled by the JSP page formatting the message. In the example
shown, UserExistsException reports that the given user name already exists in
the system, and the exception object contains the user name that caused the error.
The exception does not contain localized messages, because the localization is
handled by the JSP page for the locale. The English page (/jsp/UserExists.jsp)
contains a line something like this:

User <app:exception property="userName"/> already exists.

while the Spanish page (/jsp/sp/UserExists.jsp) contains a line like this:

El usuario <app:exception property="userName"/> ya existe.

Note that the JSP pages follow the BluePrints recommendation to use a
custom tag, rather than a scriptlet or an expression, to retrieve the user name from
the application exception.

10.7.2 System Exceptions and Message Logging

System exceptions are intended for a system administrator, so they need to be read-
able by those maintaining the runtime system. System exceptions and log messages
need localization, but using the application presentation layer is too complex for this
purpose. Instead, the BluePrints recommendation is to use resource bundles to local-
ize system exceptions and log messages. System exception and log messages are
typically for one locale only. The simplest way to determine a locale for system
messages is to use the system default locale. If the application default locale differs
from server to server, the system message locale may be indicated in a deployment
descriptor environment entry for the component that produces the message.

Large system messages are localizable using XSLT (as described in Section
10.6.1 on page 337).

System exceptions should always be subclasses of
java.lang.RuntimeException. Typically, the message of a RuntimeException

explains the error condition. In an internationalized design, the exception message

SUMMARY 345

DEA2e.book Page 345 Friday, March 8, 2002 12:31 AM
should contain the resource bundle key of the system message, not the message
itself. The component that writes the log can use resource bundles and class
MessageFormat to localize the exception message.

10.8 Summary

An application must be properly internationalized before it can be localized. The
J2SE platform APIs provide many useful tools that enable the developer to interna-
tionalize a J2EE application. J2EE applications can be localized by creating param-
eterized pages or by using separate pages for each locale. J2EE applications require
proper treatment of locale and encodings when accepting input, communicating
data between tiers, processing data in EJB components, and modeling database
schemas. Localization of J2EE applications can also be done within each page or at
an application level using separate JSP pages for each locale. Finally, J2EE applica-
tions should report system errors in all tiers in a language appropriate for system
administrators.

10.9 References and Resources

• A guide to J2SE 1.4 internationalization:
<http://java.sun.com/j2se/1.4/docs/guide/intl>

• The JavaTM Tutorial Continued: The Rest of the JDKTM. M. Campione, K. Wal-
rath, A. Huml, Tutorial Team. Copyright 1998, Addison-Wesley.
<http://java.sun.com/docs/books/tutorial/i18n/index.html>

• JavaTM Internationalization. A. Deitsch, D. Czarnecki. Copyright 2001.
O’Reilly & Associates.

• The JavaTM Servlet Programming. J. Hunter, W. Crawford. Copyright 2001,
O'Reilly & Associates.

• Standard IANA names for encoded character sets:
<http://www.iana.org/assignments/character-sets>

• RFC-1049, A Content-Type Header Field for Internet Messages
<http://www.ietf.org/rfc/rfc1049.txt>

CHAPTER 10 J2EE INTERNATIONALIZATION AND LOCALIZATION346

DEA2e.book Page 346 Friday, March 8, 2002 12:31 AM
• RFC-1766, Tags for the Identification of Languages
<http://www.ietf.org/rfc/rfc1766.txt>

• RFC-2045, Multipurpose Internet Mail Extensions, Part 1: Format of Internet
Message Bodies. <http://ds.internic.net/rfc/rfc2045.txt>

• RFC-2616, Hypertext Transport Protocol—HTTP 1.1
<http://www.w3.org/Protocols/rfc2616/rfc2616.html>

• The IETF Internet-Draft “Character Set” Considered Harmful clarifies inter-
nationalization terminology:
<http://www.w3.org/MarkUp/html-spec/charset-harmful.html>

• Unicode Technical Report 10, Unicode Collation Algorithm. M. Davis,
K. Whistler. <http://www.unicode.org/unicode/reports/tr10>

• Unicode Technical Report 17, Character Encoding. K. Whistler, M. Davis.
<http://www.unicode.org/unicode/reports/tr17>

• The Java Standard Tag Libraries project can be found at:
<http://java.sun.com/products/jsp/taglibraries.html>

• Resources about ISO 639, 2-character language name abbreviations:
<http://xml.coverpages.org/languageIdentifiers.html#iso639>

• Resources about ISO 3166, 2-character country name abbreviations:
<http://xml.coverpages.org/country3166.html>

DEA2e.book Page 347 Friday, March 8, 2002 12:31 AM
C H A P T E R 11

Architecture of the Sample

Application
by Sean Brydon

AT this point, you should have a good understanding not only of the J2EE plat-
form and its technologies but also how best to apply these technologies in your
application. This chapter pulls it all together to show recommended approaches to
designing an entire application.

This chapter presents the high-level architecture for the sample Java Pet Store
application and demonstrates the approach to designing some key aspects of this
application. The focus is on common enterprise application architectural issues
and solutions using J2EE technology, especially as implemented in the sample
application. You should view this as a guideline to good design for applications
built for the J2EE platform environment. Keep in mind that these are guidelines
and suggested approaches. You may find that some aspects work well for you and
some are not as applicable.

The chapter begins with a description of some of the J2EE architectural
approaches and the J2EE design patterns. It also examines the design issues
common to all J2EE applications. These architectural concepts form the basis for
the design of the sample application. After covering these concepts, the chapter
presents an overview of the sample application. Then, it examines the key design
approaches used in the sample application itself.
347

CHAPTER 11 ARCHITECTURE OF THE SAMPLE APPLICATION348

DEA2e.book Page 348 Friday, March 8, 2002 12:31 AM
11.1 J2EE Architecture Approaches

Before delving into the design and architecture of the sample application, it is
important to understand some commonly used J2EE architectural approaches. J2EE
applications that are interactive benefit from using the Model-View-Controller
(MVC) architecture. MVC is particularly well-suited for interactive Web applica-
tions—applications where a Web user interacts with a Web site, with multiple itera-
tions of screen page displays and multiple round-trips of requesting and displaying
data.

In contrast, a workflow architecture is more suitable for applications that
focus on process control and have fewer interactive features. Such applications
may use asynchronous messaging, implemented with message-driven beans and
JMS, so that different processing steps in the workflow can communicate.

In addition to the architecture, J2EE design patterns help to determine well-
formed application designs.

11.1.1 Model-View-Controller Architecture

The Model-View-Controller architecture is a widely-used architectural approach for
interactive applications. It divides functionality among objects involved in maintain-
ing and presenting data to minimize the degree of coupling between the objects. The
architecture maps traditional application tasks—input, processing, and output—to
the graphical user interaction model. They also map into the domain of multitier
Web-based enterprise applications.

The MVC architecture divides applications into three layers—model, view,
and controller—and decouples their respective responsibilities. Each layer
handles specific tasks and has specific responsibilities to the other areas.

• A model represents business data and business logic or operations that govern
access and modification of this business data. Often the model serves as a soft-
ware approximation to real-world functionality. The model notifies views
when it changes and provides the ability for the view to query the model about
its state. It also provides the ability for the controller to access application func-
tionality encapsulated by the model.

• A view renders the contents of a model. It accesses data from the model and
specifies how that data should be presented. It updates data presentation when
the model changes. A view also forwards user input to a controller.

J2EE ARCHITECTURE APPROACHES 349

DEA2e.book Page 349 Friday, March 8, 2002 12:31 AM
• A controller defines application behavior. It dispatches user requests and
selects views for presentation. It interprets user inputs and maps them into
actions to be performed by the model. In a stand-alone GUI client, user inputs
include button clicks and menu selections. In a Web application, they are
HTTP GET and POST requests to the Web tier. A controller selects the next
view to display based on the user interactions and the outcome of the model
operations. An application typically has one controller for each set of related
functionality. Some applications use a separate controller for each client type,
because view interaction and selection often vary between client types.

Figure 11.1 depicts the relationships between the model, view, and controller
layers of an MVC application.

Figure 11.1 The Model-View-Controller Architecture

Separating responsibilities among model, view, and controller objects reduces
code duplication and makes applications easier to maintain. It also makes han-
dling data easier, whether adding new data sources or changing data presentation,
because business logic is kept separate from data. It is easier to support new client

CHAPTER 11 ARCHITECTURE OF THE SAMPLE APPLICATION350

DEA2e.book Page 350 Friday, March 8, 2002 12:31 AM
types, because it is not necessary to change the business logic with the addition of
each new type of client.

11.1.2 J2EE Design Patterns

A design pattern describes a proven solution to a recurring design problem. Design
patterns leverage the knowledge and insights of other developers. They are reusable
solutions for common problems. Design patterns address individual problems, but
they can be combined in different ways to achieve a solution for an entire system.
Because design patterns can be named, they become part of the architect’s vocabu-
lary for describing a solution.

There are a common set of design patterns for the J2EE platform. This section
briefly mentions those J2EE design patterns that apply to the sample application.
Later, you will see how these patterns are combined and used in the application
architecture. Refer to Section 11.6 on page 383 for references to sources of more
information on patterns. In particular, you should refer to Core J2EE Patterns, by
Alur, Crupi, and Malks, as that book gives a complete description of all the J2EE
patterns.

• Intercepting filter—This pattern applies to request pre- and post-processing.
It applies additional services needed to process a request. For example, an in-
tercepting filter such as a servlet filter may handle all incoming requests to the
Web site and provide a central mechanism for authorization.

• View helper—A view helper encapsulates the presentation and data access
logic portions of a view, thus refining the view and keeping it simpler. Presen-
tation logic concerns formatting data for display on a page, while data access
logic involves retrieving data. View helpers are often JSP tags for rendering or
representing data and JavaBeans for retrieving data.

• Composite view—This pattern makes view presentation more manageable by
creating a template to handle common page elements for a view. Often, Web
pages contain a combination of dynamic content and static elements, such as a
header, footer, logo, background, and so forth. The dynamic portion is partic-
ular to a page, but the static elements are the same on every page. The compos-
ite view template captures the common features.

• Front controller—This pattern provides a centralized controller for managing
requests. A front controller receives all incoming client requests, forwards

J2EE ARCHITECTURE APPROACHES 351

DEA2e.book Page 351 Friday, March 8, 2002 12:31 AM
each request to an appropriate request handler, and presents an appropriate
response to the client.

• Value object—This pattern facilitates data exchange between tiers (usually
the Web and EJB tiers) by reducing the cost of distributed communication. In
one remote call, a single value object can be used to retrieve a set of related
data, which then is available locally to the client. See Chapter 5 for more infor-
mation on value objects.

• Session facade—This pattern coordinates operations between cooperating
business objects, unifying application functions into a single, simplified inter-
face for presentation to the calling code. It encapsulates and hides the complex-
ity of classes that must cooperate in specific, possibly complex ways, and
isolates its callers from business object implementation changes. A session
facade, usually implemented as a session bean, hides the interactions of under-
lying enterprise beans.

• Business delegate—This pattern intervenes between a remote business object
and its client, adapting the business object’s interface to a friendlier interface
for the client. It decouples the Web tier presentation logic from the EJB tier by
providing a facade or proxy to the EJB tier services. The delegate takes care of
lower-level details, such as looking up remote objects and handling remote ex-
ceptions, and may perform performance optimizations, such as caching data
retrieved from remote objects to reduce the number of remote calls.

• Data access object—This pattern abstracts data access logic to specific re-
sources. It separates the interfaces to a systems resource from the underlying
strategy used to access that resource. By encapsulating data access calls, data
access objects facilitate adapting data access to different schemas or database
types. See Chapters 5 and 6 for more information on data access objects.

When deciding on a pattern to use, keep in mind that certain patterns are more
applicable to a particular application tier. For example, patterns related to views
and presentation are applied in the Web tier. Good examples of Web tier patterns
are composite view and view helper. Other patterns are more concerned with con-
trolling business logic, and they are more useful in the EJB tier. Session facade is
a good example of an EJB tier pattern. Other patterns focus on retrieving data or
delegating operations, and they are best applied between tiers. The value object
and business delegate patterns fall into this category.

CHAPTER 11 ARCHITECTURE OF THE SAMPLE APPLICATION352

DEA2e.book Page 352 Friday, March 8, 2002 12:31 AM
11.2 Sample Application Overview

The sample application is a typical e-commerce application: an online pet store
enterprise that sells products—animals—to customers. The application has a Web
site through which it presents an interface to customers. Administrators and external
businesses such as suppliers use other application interfaces to maintain inventory
and perform managerial tasks. Each class of users has access to specific categories
of functionality, and each interacts with the application through a specific user inter-
face mechanism.

While the application handles most tasks automatically, some tasks must be
done manually, such as managing inventory and shipping orders.

You can consider the entire sample application as the Pet Store enterprise.
Figure 11.2 provides a high-level view of the business or real-world problem that
the application is intended to solve.

.

Figure 11.2 Real-World Business

Pet Store Web Site Credit Card
Service

Order
Fulfillment
Center

Warehouse

Customer

Admin GUI

DESIGNING THE SAMPLE APPLICATION 353

DEA2e.book Page 353 Friday, March 8, 2002 12:31 AM
Conceptually, the business divides into these functional units:

• The Web site presents an online pet store interface to the customer. The cus-
tomer shops and places orders through this interface. When a customer com-
pletes an order, the interface sends the order to the order fulfillment center.
Because the Web site functional unit drives further business processing when
it sends a purchase order to the fulfillment center, it can be thought of as the
front end.

• The fulfillment center fulfills customer orders. It has an order fulfillment com-
ponent and a supplier component. The fulfillment center processes orders
based on the enterprise’s business rules, manages financial transactions, and
arranges for products to ship to customers. Because not all products are in
stock at any given moment, order processing may occur over a period of time.
Administrators and other suppliers may interact with the fulfillment center.
This portion of the business is referred to as the back end, because its process-
ing is triggered by placing an order, an action that occurs in the Web site por-
tion. Although the supplier component is part of the sample application, it
could just as easily be a service external to the application.

11.3 Designing the Sample Application

Designing an application starts with assessing functional requirements and then
determining an optimal software implementation to meet those requirements. There
are numerous analysis tools for gathering and assessing application requirements.
Use case analysis is one such tool. Use case analysis identifies the actors in a system
and the operations they may perform.

The pet store application is a typical e-commerce site. The customer selects
items from a catalog, places them in a shopping cart, and, when ready, purchases
the shopping cart contents. Prior to a purchase, the sample application displays the
order: the selected items, quantity and price for each item, and the total cost. The
customer can revise or update the order. To complete the purchase, the customer
provides a shipping address and a credit card number.

Figure 11.3 shows a high-level use case diagram for the sample application. It
shows the potential system actors and their actions:

CHAPTER 11 ARCHITECTURE OF THE SAMPLE APPLICATION354

DEA2e.book Page 354 Friday, March 8, 2002 12:31 AM
Figure 11.3 Sample Application Use Case Diagram

• A customer shops, places orders, manages her user account, and receives
e-mail.

• An administration manager reviews enterprise financial data.

Customer

Browse
Catalog

Manage
Account

Receive Customer
Order Status

Place Orders

Administrator

Manage
Financial Data

Approve
Purchase Order

Pack and
Ship an Order

Warehouse
Worker

Process
Credit Card

Payment

<<system>>
Credit Card Service

e-mail

DESIGNING THE SAMPLE APPLICATION 355

DEA2e.book Page 355 Friday, March 8, 2002 12:31 AM
• A bank system processes credit cards.

• A warehouse worker packs and ships orders.

Once you have determined the system’s requirements, you can begin design-
ing the application. We have designed the sample application using two different
architecture models. The Model-View-Controller architecture works well for the
interactive Web site unit, such as the pet store Web site. Because the fulfillment
center is not an interactive application, its design is based on a process-oriented
architecture.

11.3.1 Choosing Application Tiers

One important design step is to decide the tiers that the application uses. The J2EE
platform is designed for multitier applications, and it offers flexibility in distributing
application functionality across the tiers. Certain tiers are always present in a Web-
enabled application such as the sample application, including:

• The client tier provided by the browser

• The Web tier provided by the server

• The EJB tier provided by the server

• The enterprise information system or database tier holding persistent applica-
tion data

It is important to choose whether a Web tier component accesses the enter-
prise information system resources directly or through an EJB tier. The decision
depends on the application’s functionality, complexity, and scalability require-
ments. Good design takes into account the possibility for change and builds in the
facility to easily migrate to an EJB-centric approach. The EJB tier offers advan-
tages to its components, such as automatically handling security, transactions, dis-
tributed processing, and so forth. By using EJB components, developers can
reduce the level of systems programming required for the application and instead
can concentrate on the application’s business logic.

Next, decide how to distribute application functionality across these tiers.
Such distribution follows the application’s division into objects and should be
undertaken carefully.

CHAPTER 11 ARCHITECTURE OF THE SAMPLE APPLICATION356

DEA2e.book Page 356 Friday, March 8, 2002 12:31 AM
In a Web-centric design, Web tier components using container services such
as the JDBC API can communicate directly with the enterprise information
system resources that hold application data. In this approach, Web tier compo-
nents are responsible for almost all of the application functionality. They handle
dynamic content generation, content presentation, and user requests. They must
implement core application functionality, such as order processing and enforcing
the application’s business rules. Finally, the Web tier components must also
manage transactions, such as by using JTA, and connection pooling for data
access. Because it must handle so many functions, Web-centric application soft-
ware can easily become monolithic. As a result, unless special efforts are taken, it
does not scale well with increasing software complexity.

In an EJB-centric design, enterprise beans running on EJB servers encapsulate
the enterprise information system resources and the core application logic. Web
tier components communicate with EJB tier components instead of directly
accessing the enterprise information system resources. This approach moves most
of the core application functionality to EJB tier components, using the Web tier
components only as a front end for receiving client Web requests and for present-
ing HTML responses to the client.

The principal advantage of an EJB-centric approach is that enterprise beans
have access to a broad set of enterprise-level services. These services make it
easier to manage transaction and security aspects of the application. The EJB con-
tainer handles system-level details and provides a managed environment for its
components, allowing a developer to focus entirely on the application domain
issues. These standardized container-provided services translate into better soft-
ware reliability. They also make it easier for an application to support multiple
client types. The EJB architecture supports a programming paradigm that pro-
motes encapsulation and use of components, resulting in software that stays man-
ageable as applications grow more complex.

There is a trade-off between the two approaches. The Web-centric approach
can enable a quick start for small applications with few transactional needs, while
the EJB-centric approach is better for building a large-scale enterprise application
where code and performance scalability are prime factors. The Web-centric
approach, while more prevalent, has limitations for building large-scale, complex
applications. Applications built with a Web-centric approach can rapidly become
too complex and difficult to maintain.

There are strengths to both approaches, and good design requires selecting the
right balance for each application. The sample application demonstrates an
approach designed for growth. This design can be considered an EJB-centric

DESIGNING THE SAMPLE APPLICATION 357

DEA2e.book Page 357 Friday, March 8, 2002 12:31 AM
architecture. While all of the application’s modules use an EJB-centric design, in
theory a Web-centric model could have been used in at least one case for the
module that reads the catalog.

11.3.2 Choosing Local or Distributed Architecture

Most enterprise applications are distributed across a network, because client and
data store resources are usually located on different machines from the application
itself. An EJB-centric approach, with the business logic residing on the middle tier,
gives architects the flexibility to design the application as a distributed or a local
application. (Distributed applications are those that interact through remote commu-
nication mechanisms.)

The J2EE platform provides facilities to help create distributed applications,
but it also lets application developers apply a local model to their application. A
developer needs to weigh the advantages and disadvantages of local and remote
architecture models, and balance these against the requirements of the application.

11.3.2.1 Comparison of Local and Distributed Architectures

A key consideration for developers is whether to use enterprise beans with a local
client view or a remote client view. With careful thought, developers can use enter-
prise beans with both local and remote client views.

Applications implemented with a local architecture model have their compo-
nents reside in the same Java Virtual Machine (JVM). Because their co-location in
the same address space is guaranteed, these components can communicate with
each other without the overhead of remote network calls, thus permitting more
efficient fine-grained access among them. As a result, these applications usually
exhibit better performance.

A distributed architecture is one in which the application is potentially imple-
mented across multiple JVMs, though a distributed application may be deployed
on a single JVM. A distributed architecture is more complex because of additional
system-level issues, such as remote communication, security, and so forth. At the
same time, it may be more modular, maintainable, and reusable because there is
less dependency among individual components. While this approach offers
greater flexibility to the application, it usually results in decreased performance
because access to a remote component involves significant network overhead.
Such overhead includes the cost of serialization and deserialization, along with
parameter marshalling and demarshalling. (Although much of this overhead may

CHAPTER 11 ARCHITECTURE OF THE SAMPLE APPLICATION358

DEA2e.book Page 358 Friday, March 8, 2002 12:31 AM
be optimized away if the application is deployed on a single JVM, some overhead
still remains.) Applications in a distributed architecture must pass parameters by
value, which often necessitates excessive data copying.

A distributed architecture is also typically more scalable than a local applica-
tion design. Despite the higher performance of a local application architecture, its
components must reside in the same address space, so it cannot scale beyond a
single machine. While it is possible to partition the clients of a local application to
separate instances running the same application, this becomes harder to achieve
since they often need to access and update shared data. A distributed system is
generally more scalable than a local application since the components are
designed from the ground up to run in a different address space.

Distributed applications are generally more highly available than local appli-
cations. Since a distributed component does not know or depend on a particular
JVM, it is easier to migrate the distributed enterprise bean component to a differ-
ent JVM in the event of a hardware failure.

11.3.2.2 J2EE Platform Distributed and Local Options

Often, a distributed application is designed to consist of multiple local applications
or components. The local components are used for the portions of the application
that require a high level of data passing and fine-grained access, while the remote
components allow for greater scalability and network access.

Enterprise beans, which offer local and remote client views, give applications
the ability to use a local or a distributed architecture. Enterprise beans within the
same JVM can access one another using a local client view and thus take advan-
tage of the local architectural model. Web components residing in the same VM
may optionally have access to an enterprise bean’s local client view and take
advantage of the same benefits from EJB container services. Using an enterprise
bean’s remote client view gives the application the advantages of a distributed
architecture model.

Applications that require a distributed architecture can be designed to reduce
the complexity and performance implications of accessing remote objects. The
details of locating remote business objects can be encapsulated in a service locator
object, thus hiding these details from the rest of an application, whereas accessing
business objects can be encapsulated in a business delegate. Fine-grained data
access to distributed objects can be reduced by using a single value object to
retrieve a set of related data in one remote call. After the value object retrieves its

ARCHITECTURE OF THE SAMPLE APPLICATION 359

DEA2e.book Page 359 Friday, March 8, 2002 12:31 AM
data, it is available locally for an application, which can then access its individual
items.

11.4 Architecture of the Sample Application

With an understanding of these basic architectural considerations, you are ready to
examine the architecture of the sample application in detail. Recall that the applica-
tion is divided into two units: a Web site that serves as a front end to the user and an
order fulfillment center on the back end. The Web site follows the Model-View-
Controller architecture. Its architecture also combines a number of the J2EE design
patterns. The fulfillment center follows a process workflow architecture.

Figure 11.4 provides a high-level view of the major modules of the sample
application and the application’s relationship to its key participants.

Figure 11.4 Sample Application Architecture and Participants

This discussion does not cover every detail of these architectures; instead, it
illustrates several salient points of the design. You should also refer to the Java
BluePrints Web site for more detailed information on the sample application
architecture and design documents, along with the latest source code.

CHAPTER 11 ARCHITECTURE OF THE SAMPLE APPLICATION360

DEA2e.book Page 360 Friday, March 8, 2002 12:31 AM
11.4.1 Application Web Site Architecture

Developing an overall application architecture involves subdividing the application
into objects or components and assigning these components to tiers, a process called
object decomposition. While most components are consigned to one tier or another,
some serve to connect the tiers and need to span tiers, and they must be designed
accordingly.

Object design becomes important as applications grow more complex. Large
scale development of object-oriented software requires frameworks that define
how objects interact. The framework must enable software designs and code to be
easily reused. It must also identify the responsibility of each component; that is,
the division into components must ensure the unambiguous identity of what the
component represents and what it must accomplish.

Additionally, for multitier enterprise applications, it is important to:

• Separate stable code from code that changes more frequently. Usually the pre-
sentation and user interface change more often than business rules and data-
base schemas. The overall architecture should separate stable portions of the
application from the more volatile parts.

• Divide development effort along skill lines. The people that comprise an enter-
prise development team typically represent a very diverse set of skills. There
are Web page designers who do HTML layout and graphics, programmers,
application domain experts, and enterprise information system resource access
specialists, among others. The decomposition should result in a set of objects
that can be assigned to various subteams based on their particular skills. This
division of labor allows work on each object to proceed in parallel.

The MVC architecture works well for the sample application. At the highest
level, the application divides into three logical categories of layers—layers that
deal with presentation aspects of the application, those that deal with the business
rules and data, and those that accept and interpret user requests and control the
business objects to fulfill these requests.

ARCHITECTURE OF THE SAMPLE APPLICATION 361

DEA2e.book Page 361 Friday, March 8, 2002 12:31 AM
Generally, the look and feel of the application interface changes often, its
behavior changes less frequently, and business data and rules are relatively stable.
Thus, objects responsible for control are often more stable than presentation
objects, while business rules and data are generally the most stable of all.

Web page designers, HTML and JSP technology experts, and application
administrators handle implementing presentation objects after the application has
been deployed. Application developers implement control-related objects. Devel-
opers, domain experts, and database experts implement business rules and data
objects.

As discussed previously, the sample application’s Web site handles customer
interactions. (See Section 11.2 on page 352.) The Web site presents the applica-
tion’s data—the product catalog—to the user in response to the user’s requests.
The Web site’s primary responsibilities include handling user requests, retrieving
and displaying product catalog data to a user’s browser, and allowing users to
select and purchase products.

The next phase of the design process is to partition the application into
modules and objects that address the different functional requirements. The parti-
tioning process includes deciding how to apportion the application across the dif-
ferent tiers of the J2EE platform, which portions of the application need to be
distributed, and which should be implemented for local interaction.

The discussion begins with the functional specification for the user interface
to the pet store Web site. See Figure 11.5.

CHAPTER 11 ARCHITECTURE OF THE SAMPLE APPLICATION362

DEA2e.book Page 362 Friday, March 8, 2002 12:31 AM
Figure 11.5 Use Cases between Customer and Web Site

A customer accessing the Web site expects to see:

• Links or navigation bars to common navigational tasks

• A catalog providing an organized view of the site’s contents

• A search mechanism

• A master view of catalog items

customer

Browse Catalog

Search Catalog

Browse Categories

Update Shopping Cart

Browse Item Details

Browse Product Details

Sign On and Off

Update Account

Update Personalization

Submit Order
Send Purchase Order

to Order Fulfillment Center
<<include>>

ARCHITECTURE OF THE SAMPLE APPLICATION 363

DEA2e.book Page 363 Friday, March 8, 2002 12:31 AM
• A detail view that describes the details of a particular item

• A shopping cart view that lets customers review and modify the contents of
their shopping cart

• A checkout view that displays the total order cost and allows the customer to
enter billing and shipping information

• A receipt view to provide confirmation of the purchase

In addition to these user interface requirements, the application must also
support some security requirements, such as allowing only properly signed-on
users to access certain features while allowing all users free access to other areas
of the site.

Once the functional requirements are identified, the application can be divided
into modules based on functionality. Such separation reduces the dependency
between modules and allows them to be developed independently. In addition,
identifying interfaces between modules enables modules to be developed by third-
party component providers.

In this view, the application is divided into these modules:

• A control module to create and maintain user account information, which
includes a user identifier, billing, and contact information. This information is
maintained in a database. The control module also creates and manages the
user’s shopping cart and controls the interactions with the user.

• A sign-on module to handle the user log-in process and security, such as veri-
fying a user identifier and password

• A product catalog module that returns product information from the catalog
based on a user’s search criteria

• A customer module that manages a user’s purchasing process and maintains
account records for a customer

• A messaging module that enables the application to send and receive asynchro-
nous messages containing purchase orders

CHAPTER 11 ARCHITECTURE OF THE SAMPLE APPLICATION364

DEA2e.book Page 364 Friday, March 8, 2002 12:31 AM
Figure 11.6 shows how the modules in the sample application Web site relate
to each other.

Figure 11.6 Functional Modules for the Sample Application Web Site

Once the application is partitioned into functional modules, the next step is to
identify units of business logic, data, and presentation logic and model them as
software objects. This starts with identifying the options at the highest level, then
working down.

The overall design and organization of the Web site follows the Model-View-
Controller architecture, while the internal design of some of its individual compo-
nents follow the J2EE patterns. The application uses the MVC architecture
because it provides a structure for handling complex, presentation-oriented appli-
cations.

ARCHITECTURE OF THE SAMPLE APPLICATION 365

DEA2e.book Page 365 Friday, March 8, 2002 12:31 AM
In classic MVC architecture, views register themselves with the model for
change notifications. When the model changes, it notifies a view of what changed.
In the application’s Web site, the nature of HTTP requires the client view to use a
request-response paradigm to interact with the model on the EJB tier. Rather than
using notification, model changes are reported as a response to the client view.

The sample application’s Web site is a complex application. It has numerous
views and pages displayed to the customer in potentially different languages, plus
content may be personalized. Customers can make an array of different requests,
each of which the application interprets and services, with data coming from mul-
tiple sources. The application dynamically determines the sequence of views to
display to the customer.

Applying the Model-View-Controller architecture to the sample application
reduces its complexity and makes it more manageable. The architecture enhances
the degree to which the application can be maintained and extended. By separat-
ing business and control logic from data presentation, the architecture provides
the flexibility to handle such application complexity.

In the design of the Web site application, it is first partitioned into model-
view-controller layers. The application divides roughly as shown in Figure 11.7.
Keep in mind that these are not clear boundaries between model, view, and con-
troller. Application functions typically straddle these layers.

The next few sections examine the operations that are performed within and
across each Model-View-Controller architecture section and their design issues.
They also suggest the appropriate J2EE technologies and design patterns to
handle these issues.

CHAPTER 11 ARCHITECTURE OF THE SAMPLE APPLICATION366

DEA2e.book Page 366 Friday, March 8, 2002 12:31 AM
Figure 11.7 Model-View-Controller Architecture in Sample Application

11.4.1.1 View Layer of the Application Architecture

The sample application uses the J2EE platform technologies (servlets, JSP pages,
and XML) for handling user views. In general, the application uses JSP pages for
presentations where the presentation data changes rather than the structure of the
presentation. The application could use servlets for graphics and other binary data
representations or when it appears that data structure frequently changes. If the data
already exists in XML or if it must be viewed in multiple ways, this could be
handled using XML combined with XSLT.

When designing the application views, consider these key issues:

• Separate presentation logic from business and control logic.

View components should focus on presentation. It is important when designing
the view portion of an application to keep logic for presenting a view separate
from logic that implements business rules and logic that controls process flow.

ARCHITECTURE OF THE SAMPLE APPLICATION 367

DEA2e.book Page 367 Friday, March 8, 2002 12:31 AM
In addition, it is best to keep presentation logic modular by using view tem-
plates and helper objects to structure and build page content.

JSPs are an excellent technology for creating views for Web applications.
However, it is important to use JSP pages effectively. The sample application
uses JSPs for the Web site so that the JSP logic focuses on rendering the view.
The application’s JSP pages do not contain control logic. (A controller handles
control logic.) This makes it easier to reuse the presentation logic portion of
the JSP page. It is also important to avoid putting logic in embedded scriptlets.

The application uses a view helper pattern. It also encapsulates presentation
logic in JSP custom tags and uses JavaBeans to hold data. Presentation logic
implemented in custom tags or JavaBeans is separate from data and it is mod-
ular and reusable—it is defined in one place and used referentially from differ-
ent JSPs.

• Manage page layout.

Applications usually strive for a common look and feel, and keeping page lay-
outs similar within an application is important to establishing such a look and
feel. The pages for the sample application all have the same structure: a banner
across the top, a navigation menu down the left side, and a footer at the bottom.
Page content appears to the right of the navigation menu, between the banner
and the footer. The content of each segment is independent of the others.

Figure 11.8 shows two pages from the sample application. Notice the layout
similarity between these pages: the Java Pet Store banner across the top, menu
selections on the left side, and the same footer information across the bottom.
Page content appears to the right of the menu. However, the content of the two
pages is very different

CHAPTER 11 ARCHITECTURE OF THE SAMPLE APPLICATION368

DEA2e.book Page 368 Friday, March 8, 2002 12:31 AM
.

Figure 11.8 Two Sample Application Pages

A templating mechanism, such as a composite view design pattern used by the
sample application, helps to keep page layout consistent. A template deter-
mines how to assemble view components into a single view. It consolidates
page layout in one location, making it easy to change page layout in one place
and have all pages remain consistent. In addition, a template, such as compos-
ite view, separates layout from content.

• Separate developer roles.

The MVC architecture provides the means to separate the work of developers
who have different skill sets. For the most part, Web page authors primarily
have visual design skills. They usually are graphic artists or content editors,
and may not be programmers. On the other hand, programmers who know the
business model, work flow, and application requirements develop the model
and controller components. Separating developer roles minimizes interference
among developers and lets them work independently. The application uses the
view helper pattern to separate data presentation from business logic. This sep-
aration enables the Web page author to change view presentation without fear
of corrupting programming logic. Likewise, programmers can implement ap-
plication logic without affecting the page layout.

Banner

Menu

Content

Footer

ARCHITECTURE OF THE SAMPLE APPLICATION 369

DEA2e.book Page 369 Friday, March 8, 2002 12:31 AM
11.4.1.2 Model Layer of the Application Architecture

The model portion of the MVC architecture encapsulates the business objects and
API for the application’s functionality. The sample application uses enterprise beans
to implement its business logic. Enterprise beans (and the EJB tier) are the recom-
mended J2EE technology for implementing these business objects. Enterprise beans
are preferred because of the services provided by the EJB container, particularly for
applications that are transactional, distributed, and potentially scalable, and where
security is important. Simpler applications with fewer needs may be able to provide
their own services and may consider implementing their model as Java objects.

The design of the model portion of the application considers these issues:

• Keep the functional interface manageable.

The model for most applications consists of many cooperating business ob-
jects. As the number of business objects increases, developers have more dif-
ficulty understanding how they interact. Developers can be overwhelmed by
the number of APIs exposed by these object interfaces.

A complex API can be simplified using two mechanisms—a facade class and
a command pattern. A facade coordinates operations between cooperating
classes. It presents a single interface to the business objects representing the
application model or functionality. A facade encapsulates and hides the com-
plexity of these business objects from clients. In addition, because their imple-
mentation details are kept hidden by a facade, the objects can change without
affecting the clients. The sample application uses a session facade session bean
as a single interface to other enterprise bean business objects.

A facade’s effectiveness is limited, since complex applications can cause the
facade’s API to grow too large. This is the case with the sample application.
Rather than continuing to add methods to the session facade class, the sample
application implements a command pattern on top of the facade. A command
pattern encapsulates each application function in a separate class. Each com-
mand instance represents a single request for an application service along with
data necessary to perform the service.

• Develop code as components to promote reuse.

Application development is enhanced when developers design code to be mod-
ular, reusable components, or promote using off-the-shelf frameworks and
components. Modular components are designed to be independent from other
components; they are only loosely-coupled to other components. With loose

CHAPTER 11 ARCHITECTURE OF THE SAMPLE APPLICATION370

DEA2e.book Page 370 Friday, March 8, 2002 12:31 AM
coupling, changes to components have little or no impact on other components.
Also, modular components are designed to do only a single function. Single-
function components can be easily reused and they have no extra overhead.
Off-the-shelf frameworks can serve as a backbone to which other components
plug in. Both off-the-shelf frameworks and components let developers lever-
age the expertise of others.

• Manage data access for portability.

The sample application uses business data stored in several databases. Data
could also be stored in legacy systems. Each type of data repository may have
its own API. It is best if the application’s business objects are not tightly cou-
pled to a specific data persistence mechanism, because changing the underly-
ing data store or database requires changing the data access logic in the
business objects. The application uses enterprise beans with container-man-
aged persistence because, with container-managed persistence, the EJB con-
tainer handles the data access details. This decouples access to persistent data
from the data’s particular storage mechanism. When the application uses en-
terprise beans with bean-managed persistence, which it must do in certain sit-
uations, it then implements a data access object to achieve the same
decoupling. A data access object encapsulates data access mechanism details
so that these details are kept separate from business logic.

• Locate objects.

Enterprise beans and other components in a distributed system routinely use
the Java Naming and Directory Interface (JNDI) to locate other resources and
components. Lookup procedures can be complex. The application uses a ser-
vice locator object to handle all the lookup details for finding distributed ob-
jects. A business object can make one call to the service locator rather than
including this lookup logic itself, thus letting it focus on business logic.

• Separate developer roles.

As with view development, business component development is most effective
when developer roles are separated. For example, by using container-managed
persistence or having database developers implement data access objects, the
application shields business logic developers from the implementation details
of database access calls.

ARCHITECTURE OF THE SAMPLE APPLICATION 371

DEA2e.book Page 371 Friday, March 8, 2002 12:31 AM
11.4.1.3 Controller Layer of the Application Architecture

The controller section of the MVC architecture controls the flow of the application
and serves as the glue between the model and view—it executes business logic in
the model in response to user requests and helps select the next view for display. The
controller decouples data presentation from business data and logic.

It is possible to implement a controller in the client, Web, or EJB tier, or in a
combination of these tiers. A client presenting only views is considered a thin
client. A rich client implements views and a controller. Generally, a Web-tier con-
troller handles HTTP requests, passing requests to an EJB-tier controller, which in
turn invokes the business logic processing. A Web-tier controller also selects view
components for presentation by a thin Web client.

The sample application divides controller functionality between its Web and
EJB tiers, and control crosses tier boundaries. The controller receives and handles
requests between the Web and EJB tiers. The application also combines a control-
ler with a command pattern. A Web-tier front controller, implemented as a servlet,
receives HTTP requests and performs functions specific to the Web tier, such as
changing output encoding. All user requests flow through the front controller. The
front controller, using the data in the request, extracts the type of request and con-
verts it to the appropriate type of event object. It then passes the event to the EJB-
tier controller, implemented as a session bean, which matches the event to the
proper command. Ultimately, the command invokes the appropriate action on a
session facade, which executes the business logic.

The application selects the next view to display entirely in the Web tier, using
the screen flow manager for this task. While selection of the next view can be
done in either tier, it usually is done in the Web tier.

A front controller is a good design approach because it provides a single point
of contact for all application requests. It interprets requests, executes business
logic, and handles security, error handling, and view selection. Centralizing appli-
cation control provides a natural point for implementing application-wide services
and reduces code redundancy.

Implementing a controller with a command pattern not only simplifies a
session facade interface (see Section 11.4.1.2 on page 369), it also keeps the con-
troller implementation cleaner by encapsulating event- and request-handling tasks
into smaller objects. It also enables Java platform events to be used as the bridge
between Web- and EJB-tier controllers.

The application’s controller section includes a request intercepting filter. This
servlet provides application-wide security services. The request intercepting filter

CHAPTER 11 ARCHITECTURE OF THE SAMPLE APPLICATION372

DEA2e.book Page 372 Friday, March 8, 2002 12:31 AM
handles all incoming user requests and checks that users are properly logged in.
Centralizing application-wide services in one place makes it is easy to add and
remove services.

11.4.1.4 Applying MVC Architecture to Web Application

The architecture for the sample application’s Web site consists of a set of compo-
nents divided into model, view, and controller layers. The components in the con-
troller layer handle client requests—they receive client requests and start the process
of providing the appropriate response. The controller layer components are Request
Intercepting Filter, Event Controller, Event Factory, Event, EJB Tier Controller, and
Command Factory.

The model layer contains the components that handle business logic: Session
Facade, Business Object, and Data Access Object. They extract and formulate the
data required to handle a client request. The Command Handler component strad-
dles the controller and model layer, and serves as a bridge between them. The
view layer contains the components whose job is to format and present a response
to the client. It consists of the following components: Screen View, Composite
View, Screen Flow Manager, and View Helper. Three additional components—
Service Locator, Value Object, and Business Delegate—apply the MVC approach
in a distributed setting. They handle the issues that arise in a distributed architec-
ture.

Let’s examine the architecture of the application in more detail by following a
user request received by the Web site. This section shows how the model, view,
and controller portions of the Web site handle the request and how different
objects or components are designed to handle the application’s functionality.
Whenever possible, these components follow J2EE design patterns. Figure 11.9
shows how the sample application architecture decomposes into components.

ARCHITECTURE OF THE SAMPLE APPLICATION 373

DEA2e.book Page 373 Friday, March 8, 2002 12:31 AM
Figure 11.9 Class Diagram Showing Sample Application Architectural Components

CHAPTER 11 ARCHITECTURE OF THE SAMPLE APPLICATION374

DEA2e.book Page 374 Friday, March 8, 2002 12:31 AM
A client interacts with different views presented in the browser and eventually
submits an HTTP request. The request goes to the controller section where it is
handled by a Request Intercepting Filter. This servlet filter receives the request
and does the necessary security checks. It then passes the request to the Front
Controller servlet. The Front Controller’s job is to pull out data from the request
form and create an event object with that data. It uses an event factory to create the
right type of event and then passes the event to an EJB Tier Controller session
bean. This session bean maps the event to a command using the services of a
Command Factory and a Command Handler object. A Command Handler object
simplifies a session facade by determining the action to perform.

To handle the request, the Command Handler object invokes the correct action
on a Session Facade, which is a session bean in the model section. The Session
Facade organizes the work that needs to be done. It invokes operations on other
session and entity beans, referred to as business objects, that carry out the details
of the application’s business logic. Entity beans may access the database if it’s
necessary to retrieve data. If the entity bean uses container-managed persistence,
the EJB container handles the data access logic. Otherwise, if the entity bean uses
bean-managed persistence, there may be an additional Data Access Object to hold
the access logic.

The sample application includes an EJB Tier Controller that relies on a
command handler object. The EJB Tier Controller provides a single method,
handleEvent, through which requests from the Front Controller pass as events.
The handleEvent method includes an event argument that encapsulates the
requested operation and any required data. Based on the event type, the EJB Tier
Controller uses the Command Factory to get the proper Command Handler. The
Command Handler orchestrates updates to model data contained in EJB compo-
nents. By using the command pattern, the EJB Tier Controller delegates the exe-
cution of business functionality to the Command Handler.

For example, the application centralizes business logic in a PlaceOrder

command handler. The PlaceOrder command handler orchestrates the details of
business operations in one object. The PlaceOrder command handler bean calls
four different enterprise beans (both entity and session beans) to carry out its oper-
ations, such as requesting database information, preparing orders, formulating
response information, building and sending XML messages, and so forth.

To present a page to the user, the application must retrieve data and then
format it properly. Not only must the application build the presentation page, it
must also know the correct page to display within the sequence of pages. At the
data retrieval level, the application uses a Service Locator object to perform look

ARCHITECTURE OF THE SAMPLE APPLICATION 375

DEA2e.book Page 375 Friday, March 8, 2002 12:31 AM
up functions. It also uses a Business Delegate to bridge the EJB and Web tiers,
particularly if its entity beans are implemented with a remote client view. The
Business Delegate is an object that hides the data retrieval details, such as remote
exceptions. A Value Object may be used to limit the number of remote access
calls.

Other components take care of the presentation of the retrieved data. The
Screen View is a JSP page that builds the next screen to display to the user. It
relies on a Composite View, which is a template containing the page structure
(header, footer, and so forth). It also relies on a View Helper, either a JavaBean
component or a helper object, that extracts the dynamic content for the page from
the retrieved data. The Screen Flow Manager object keeps track of the next page
in the sequence of pages.

Figure 11.9 reflects a remote view architecture. In actuality, the sample appli-
cation Web site uses a local architecture approach. While this approach limits dis-
tribution to one VM, it does provide increased performance and the ability to have
fine-grained method access. It also enables the application to leverage all the con-
tainer-managed persistence capabilities offered by the EJB container.

Using a local or a remote architecture affects the design of the application and
its deployment strategy. Figure 11.9 would have fewer layers had it reflected this
local client view design. With a local client view, the design can include finer
granularity between components. Local method calls do not have the overhead of
remote method calls. Because there are few layers and tiers are co-located, it is not
necessary to use value objects or business delegates. Value objects are not neces-
sary for entity beans implemented with a local client view.

Deployment is also affected by use of a local or remote architecture. An appli-
cation implementing a local architecture must be deployed in one unit. Applica-
tions with a remote architecture may be deployed as separate units or as one unit.
For example, you can deploy the Web tier separate from the EJB tier, or even
deploy EJB components separately.

11.4.2 Fulfillment Center Architecture

The order fulfillment center fulfills customer orders and manages the business’s
financial transactions. Processing starts in this back end of the system when a cus-
tomer’s purchase order is received from the Web site. Processing an order from start
to finish may take a few days.

Three modules comprise the fulfillment center—the order process coordina-
tor, administrator, and supplier modules. There are submodules within each

CHAPTER 11 ARCHITECTURE OF THE SAMPLE APPLICATION376

DEA2e.book Page 376 Friday, March 8, 2002 12:31 AM
module, such as the customer relations submodule. Each module of the fulfillment
center can be packaged in a separate EAR file. Packaging modules separately
makes it easier to add and change modules. For example, the supplier currently is
internal to the system environment, but the design allows the application assem-
bler to easily add other, external suppliers.

Figure 11.10 shows the modules of the order fulfillment center and their rela-
tionships to each other.

Figure 11.10 Order Fulfillment Center Architecture

Customer

<<application>>
PetStore Web Site

Order Fulfillment

<<application>>
Order Process Coordinator

<<application>>
Supplier

CustomerRelationsPurchaseOrder
DB

Inventory
DB

<<application>>
Administrator

order and invoice [XML/JMS]

order [XML/JMS]

e-mail

ARCHITECTURE OF THE SAMPLE APPLICATION 377

DEA2e.book Page 377 Friday, March 8, 2002 12:31 AM
• The order processing module receives the purchase order and verifies the cus-
tomer’s credit status. The order processing module acts as the processing co-
ordinator or workflow manager, and maintains a global view of the entire order
processing flow. When it receives an order from the Web site, it assigns it an
identifier and stores it in the database. It communicates with the administrator
module if an order requires financial verification.

• The administrator module handles any special financial verification or pro-
cessing, such as for large orders, and obtains credit card approvals.

• A customer relation submodule within the order processing module notifies
the customer that the order has been accepted.

• The order processing module passes the order to the supplier.

• The supplier fills as much of the order as it can from inventory. The supplier
maintains the inventory data in a database. It also invoices the order processing
module for the portion of the order it is filling and ships this amount.

• The order processing module updates its purchase order records based on in-
formation from the supplier and the customer relations submodule notifies the
customer of order shipments. This process continues until the order is com-
pletely filled.

CHAPTER 11 ARCHITECTURE OF THE SAMPLE APPLICATION378

DEA2e.book Page 378 Friday, March 8, 2002 12:31 AM
Figure 11.11 shows the flow of work in the order fulfillment center.

Figure 11.11 Fulfillment Center Workflow

ARCHITECTURE OF THE SAMPLE APPLICATION 379

DEA2e.book Page 379 Friday, March 8, 2002 12:31 AM
How is this implemented in the application software? The order fulfillment
center is process-oriented, its process driven by the receipt of an order from the
Web site. It typically performs the same sequence of activities for each order, and
this process usually lasts for longer than a single session. Single session refers to a
client’s session, usually an interactive session on the Web site. A single session
lasts a few minutes or it can last up to several hours at most. The order fulfillment
center’s activities, from start to completion, may last several days.

The software implementing the fulfillment center does not use the Model-
View-Controller architecture, although it does make use of some of the J2EE
design patterns. The fulfillment center uses a number of the J2EE platform tech-
nologies, including JMS API, message-driven enterprise beans, JavaMail API,
and XML.

The MVC architecture, with its focus on view presentation, is better for GUI-
based applications such as the Web site. It is not as well-suited for handling
complex process control with potentially extended latency between activities, nor
for loosely-coupled communication between participants. The transactional
model for the fulfillment center is also quite different than that for the Web site.
Web site actions can be rolled back, but recovery is more complex in the fulfill-
ment workflow.

The fulfillment center GUIs are designed following the MVC architecture. In
addition, design strategies such as the session facade pattern used in the Web site
may apply in the fulfillment center. When a session facade is used in the fulfill-
ment center, it is used selectively and only for coordinating components within a
model. A session facade is not designed to coordinate an entire ongoing process
such as that of the fulfillment center. A session facade, because it is a session
bean, is better for storing state for the duration of a single session. The entire ful-
fillment process lasts longer than a single session and its state cannot be held in a
session bean. Instead, the fulfillment center maintains its state in persistent stor-
age, using entity beans to store and retrieve this state.

This discussion focuses on the architecture of the order processing module,
because this module coordinates all the pieces of the fulfillment center application
and ensures that customer orders are processed and filled. It uses the JMS API and
message-driven beans to accomplish its tasks. Conceptually, the order processing
module divides into three pieces:

CHAPTER 11 ARCHITECTURE OF THE SAMPLE APPLICATION380

DEA2e.book Page 380 Friday, March 8, 2002 12:31 AM
• A workflow manager coordinates the activities in the fulfillment center. It
knows the overall process and the sequence of activity steps.

• Each activity handles its portion of the business logic. For example, one activ-
ity notifies the customer of the order status while a different activity prepares
invoices for shipped products.

• Transition delegates handle the details of transitioning to the next activity.
They prepare messages and send them to JMS destinations.

The order processing module implements a persistent message model that
ensures that message state is saved. The order processing module sends messages
to JMS destinations, some of which are queues and others are topics. A queue
saves message state until the message is received. A topic is used to distribute a
message to multiple recipients who have subscribed to the topic. The fulfillment
center uses durable topic subscriptions so that message state is saved until all
recipients receive the message.

The fulfillment center separates the implementation of process control from
business logic. A process manager is responsible for the entire workflow process.
It knows the sequence of steps and the rules for following these steps. It ensures
that the appropriate module or activity is invoked at the right point to carry out an
operation. If necessary, it saves process state in persistent storage so that an order
can be filled over multiple days. The process manager uses a persistent message
model that saves message state. The activity module contains the business logic,
which determines how the operation should be carried out. The business logic
within a given activity may be implemented with a session facade pattern.

Messages are sent asynchronously using the JMS API between work flow
activities. For example, the manage order flow activity sends an asynchronous
message (through a JMS queue) to the verify credit activity so that the customer’s
credit is verified before completing the order. The verify credit activity sends an
asynchronous message to the process manager indicating the results of the credit
check. These messages are encoded in XML, making it easy for different applica-
tions to communicate. The customer relations submodule uses the JavaMail API
to send e-mail notifying customers of order acceptance and shipments.

Each activity in the fulfillment center corresponds to a named JMS destina-
tion, either a queue or topic. This named destination is the endpoint that maps to a
step in the workflow. Components of the system can send messages to and receive
messages from these named destinations. A message-driven bean implements the
boundary of the application or module responsible for each piece of the work

ARCHITECTURE OF THE SAMPLE APPLICATION 381

DEA2e.book Page 381 Friday, March 8, 2002 12:31 AM
flow. A message-driven bean enables asynchronous process control messaging,
thereby removing any tight-coupling restrictions between activities. The message-
driven bean receives and handles the incoming message request to the particular
destination. It passes the message contents to its related work activity module,
which might be the module to formulate an order addressed to the supplier or a
notification message for the customer, and that module carries out the operation.
The message-driven bean then invokes a transition delegate, whose responsibility
is to notify the next step in the work flow. The order of steps in the work flow is
determined and coded appropriately in each transition delegate. The transition
delegate asynchronously sends the appropriate message to a named JMS destina-
tion, which is subscribed to by the next activity in the sequence. The delegate may
also notify the order processing module so that it can maintain its global view of
the work flow.

Depending on the particular point in the work flow, a transition delegate may
be notifying a single activity or it may be notifying several activities. When it
needs to notify a single activity, a transition delegate sends its message to a JMS
queue. The message-driven bean for the activity that has subscribed to this queue
receives any messages sent to the queue. The queue holds the message until it is
received by the message-driven bean. When a transition delegate notifies more
than one activity, it sends a message to a JMS topic that is subscribed to by the
interested activities. This is a durable subscription to ensure that the topic holds
the message until received by all subscribers. For example, the transition delegate
for the ship order activity notifies the invoice order activity and the notify cus-
tomer activity. The invoice order activity and the notify customer activity both
subscribe to the same named topic to which the ship order transition delegate
sends its message. They both receive the message and can act upon it.

Figure 11.12 shows how the activity workflow manager software models a
portion of the process control workflow. The diagram shows the message-driven
bean placed at the boundary of each activity to receive messages for that activity
and the transition delegate that knows the JMS destination subscribed to by the
next activity in the sequence. Messages are encoded in XML and are sent via the
JMS API to a JMS destination, either a queue or topic.

CHAPTER 11 ARCHITECTURE OF THE SAMPLE APPLICATION382

DEA2e.book Page 382 Friday, March 8, 2002 12:31 AM
Figure 11.12 Process Work Flow of Fulfillment Center

As noted previously, the process work flow often takes longer than a single
session to complete. The state of the various activities must be saved. While the
process work flow diagram does not show where and when state is saved, entity
beans save state when needed to the purchase order or inventory database.

11.5 Summary

This chapter examined the recommended architectures for J2EE applications and
covered designing an application for the J2EE platform. It described the Model-
View-Controller architecture and showed how this architecture applies to enterprise
applications. It also described the more commonly used J2EE design patterns,
which are useful for designing components within an application.

REFERENCES AND RESOURCES 383

DEA2e.book Page 383 Friday, March 8, 2002 12:31 AM
The architecture of the sample application partitions its functionality into mod-
ules, assigns functionality to tiers, and decomposes the modules into specific objects
to represent the behavior and data of the application. The principles guiding the
architecture include reuse of software designs and code, separation of stable code
from volatile code, object decomposition along skill lines, and ease of migration
from a Web-centric to EJB-centric model.

The sample application adapts the MVC architecture to the domain of enter-
prise applications and shows how to apply J2EE design patterns to application
components. It takes you through the design of the sample application, starting
with formulating functional specifications and high-level considerations such as
choosing application tiers and deciding between a local or distributed model. It
shows you how to decompose an application into objects and design and imple-
ment these objects so that they are efficient, modular, and reusable.

The J2EE platform provides system services that simplify the work that appli-
cation objects need to perform. The sample application uses the J2EE support for
distributed transactions across multiple JDBC databases. In addition, it uses
deployment and security capabilities of the J2EE platform to support customers
with different profiles.

11.6 References and Resources

The following resources are recommended for further information on design pat-
terns in general and on particular J2EE design patterns.

• Core J2EE Patterns. D. Alur, J. Crupi, D. Malks. Copyright 2001, Prentice
Hall PTR.

• Design Patterns. E. Gamma, R. Helm, R. Johnson, J. Vlissides. Copyright
1995, Addison-Wesley.

• Refactoring: Improving the Design of Existing Code. M. Fowler, et al. Copy-
right 1999, Addison-Wesley.

• Pattern-Oriented Software Architecture, Volume 1: A System of Patterns.
F. Buschmann, et al. Copyright 1996, John Wiley & Sons.

• Pattern-Oriented Software Architecture, Volume 2: Patterns for Concurrent
and Networked Objects. D. Schmidt, et al. Copyright 2000, John Wiley &
Sons.

DEA2e.book Page 384 Friday, March 8, 2002 12:31 AM

DEA2e.book Page 385 Friday, March 8, 2002 12:31 AM
Afterword
THIS book has presented an overview of application design and development
with the Java 2 Platform, Enterprise Edition. Its goal has been to introduce enter-
prise developers to the concepts and technology used in designing applications for
the J2EE platform, and to give practical examples of a typical enterprise application.

While this book has explored many of the decisions that must be made in the
process of designing and developing applications, it is necessarily limited in
scope. We've made an effort to be concise in order to focus on high-level design
considerations rather than on extensive implementation details.

While the Java BluePrints program tries to maintain this overall focus, it does
provide additional resources for analyzing application design and developing
effective approaches to specific problems. The goal of the program is to offer an
ongoing support mechanism for developers engaged in applying Java technologies
to real-world problems and to evolve a variety of best practices to apply to design-
ing Java applications.

The Java BluePrints program includes a regularly updated Web site, articles
published by developer-focused magazines and third-party Web sites, and future
books in the Addison-Wesley Java Series, Enterprise Edition.

Your comments on this book, your requests for coverage of additional topics,
your participation in our online surveys, and your attendance at our sessions at
events such as the JavaOneSM Developer Conference are all important to the
success of the Java BluePrints program. Please contact us any time with your
feedback:

javablueprints-feedback@sun.com.

The Java BluePrints Team
385

DEA2e.book Page 386 Friday, March 8, 2002 12:31 AM

DEA2e.book Page 387 Friday, March 8, 2002 12:31 AM
Glossary
access control The methods by which interactions with resources are limited to
collections of users or programs for the purpose of enforcing integrity, confi-
dentiality, or availability constraints.

ACID The acronym for the four properties guaranteed by transactions: atomicity,
consistency, isolation, and durability.

activation The process of transferring an enterprise bean from secondary storage
to memory. (See passivation.)

applet A component that typically executes in a Web browser, but can execute in a
variety of other applications or devices that support the applet programming
model.

applet container A container that includes support for the applet programming
model.

Application Component Provider A vendor that provides the Java classes that
implement components’ methods, JSP page definitions, and any required
deployment descriptors.

Application Assembler A person that combines components and modules into
deployable application units.

application client A first-tier client component that executes in its own Java vir-
tual machine. Application clients have access to some J2EE platform APIs
(JNDI, JDBC, RMI-IIOP, JMS).

application client container A container that supports application client compo-
nents.

application client module A software unit that consists of one or more classes
and an application client deployment descriptor.

authentication The process by which an entity proves to another entity that it is
acting on behalf of a specific identity. The J2EE platform requires three types
of authentication: basic, form-based, and mutual, and supports digest authen-
tication.
387

GLOSSARY388

DEA2e.book Page 388 Friday, March 8, 2002 12:31 AM
authorization See access control.

authorization constraint An authorization rule that determines who is permitted
to access a Web resource collection.

basic authentication An authentication mechanism in which a Web server
authenticates an entity with a user name and password obtained using the Web
client’s built-in authentication mechanism.

bean-managed persistence Data transfer between an entity bean’s variables and
a resource manager managed by the entity bean.

bean-managed transaction A transaction whose boundaries are defined by an
enterprise bean.

business logic The code that implements the functionality of an application. In the
Enterprise JavaBeans model, this logic is implemented by the methods of an
enterprise bean.

business method A method of an enterprise bean that implements the business
logic or rules of an application.

callback methods Methods in a component called by the container to notify the
component of important events in its life cycle.

caller Same as caller principal.

caller principal The principal that identifies the invoker of the enterprise bean
method.

client certificate authentication An authentication mechanism in which a client
uses a X.509 certificate to establish its identity.

commit The point in a transaction when all updates to any resources involved in
the transaction are made permanent.

component An application-level software unit supported by a container. Compo-
nents are configurable at deployment time. The J2EE platform defines four
types of components: enterprise beans, Web components, applets, and appli-
cation clients.

component contract The contract between a component and its container. The
contract includes life cycle management of the component, a context interface
that the instance uses to obtain various information and services from its con-

GLOSSARY 389

DEA2e.book Page 389 Friday, March 8, 2002 12:31 AM
tainer, and a list of services that every container must provide for its compo-
nents.

connection See resource manager connection.

connection factory See resource manager connection factory.

connector A standard extension mechanism for containers to provide connectiv-
ity to enterprise information systems. A connector is specific to an enterprise
information system and consists of a resource adapter and application devel-
opment tools for enterprise information system connectivity. The resource
adapter is plugged into a container through its support for system-level con-
tracts defined in the connector architecture.

Connector architecture An architecture for integration of J2EE products with
enterprise information systems. There are two parts to this architecture: a
resource adapter provided by an enterprise information system vendor and the
J2EE product that allows this resource adapter to plug in. This architecture
defines a set of contracts that a resource adapter has to support to plug in to a
J2EE product, for example, transactions, security, and resource management.

container An entity that provides life cycle management, security, deployment,
and runtime services to components. Each type of container (EJB, Web, JSP,
servlet, applet, and application client) also provides component-specific ser-
vices.

container-managed persistence Data transfer between an entity bean’s variables
and a resource manager managed by the entity bean’s container.

container-managed transaction A transaction whose boundaries are defined by
an EJB container. An entity bean must use container-managed transactions.

context attribute An object bound into the context associated with a servlet.

conversational state The field values of a session bean plus the transitive closure
of the objects reachable from the bean’s fields. The transitive closure of a bean
is defined in terms of the serialization protocol for the Java programming lan-
guage, that is, the fields that would be stored by serializing the bean instance.

CORBA Common Object Request Broker Architecture. A language-independent,
distributed object model specified by the Object Management Group.

GLOSSARY390

DEA2e.book Page 390 Friday, March 8, 2002 12:31 AM
create method A method defined in the home interface and invoked by a client to
create an enterprise bean.

credentials The information describing the security attributes of a principal.

CTS Compatibility Test Suite. A suite of compatibility tests for verifying that a
J2EE product complies with the J2EE platform specification.

delegation An act whereby one principal authorizes another principal to use its
identity or privileges with some restrictions.

Deployer A person who installs modules and J2EE applications into an opera-
tional environment.

deployment The process whereby software is installed into an operational envi-
ronment.

deployment descriptor An XML file provided with each module and application
that describes how they should be deployed. The deployment descriptor
directs a deployment tool to deploy a module or application with specific con-
tainer options and describes specific configuration requirements that a
Deployer must resolve.

digest authentication An authentication mechanism in which a Web client
authenticates to a Web server by sending the server a message digest along its
HTTP request message. The digest is computed by employing a one-way hash
algorithm to a concatenation of the HTTP request message and the client’s
password. The digest is typically much smaller than the HTTP request and
doesn’t contain the password.

distributed application An application made up of distinct components running
in separate runtime environments, usually on different platforms connected
via a network. Typical distributed applications are two-tier (client-server),
three-tier (client-middleware-server), and multitier (client-multiple middle-
ware-multiple servers).

DOM Document Object Model. A tree of objects with interfaces for traversing
the tree and writing an XML version of it, as defined by the W3C specifica-
tion.

DTD Document Type Definition. A description of the structure and properties of a
class of XML files.

GLOSSARY 391

DEA2e.book Page 391 Friday, March 8, 2002 12:31 AM
EAR file A JAR archive that contains a J2EE application.

EJBTM See Enterprise JavaBeans.

EJB container A container that implements the EJB component contract of the
J2EE architecture. This contract specifies a runtime environment for enter-
prise beans that includes security, concurrency, life cycle management, trans-
action, deployment, naming, and other services. An EJB container is provided
by an EJB or J2EE server.

EJB Container Provider A vendor that supplies an EJB container.

EJB context An object that allows an enterprise bean to invoke services provided
by the container and to obtain the information about the caller of a client-
invoked method.

EJB home object An object that provides the life cycle operations (create,
remove, find) for an enterprise bean. The class for the EJB home object is
generated by the container’s deployment tools. The EJB home object imple-
ments the enterprise bean’s home interface. The client references an EJB
home object to perform life cycle operations on an EJB object. The client uses
JNDI to locate an EJB home object.

EJB JAR file A JAR archive that contains an EJB module.

EJB module A software unit that consists of one or more enterprise beans and an
EJB deployment descriptor.

EJB object An object whose class implements the enterprise bean’s remote inter-
face. A client never references an enterprise bean instance directly; a client
always references an EJB object. The class of an EJB object is generated by
the container’s deployment tools.

EJB server Software provides services to an EJB container. For example, an EJB
container typically relies on a transaction manager that is part of the EJB
server to perform the two-phase commit across all the participating resource
managers. The J2EE architecture assumes that an EJB container is hosted by
an EJB server from the same vendor, so it does not specify the contract
between these two entities. An EJB server may host one or more EJB contain-
ers.

EJB Server Provider A vendor that supplies an EJB server.

GLOSSARY392

DEA2e.book Page 392 Friday, March 8, 2002 12:31 AM
enterprise bean A component that implements a business task or business entity
and resides in an EJB container; either an entity bean or a session bean.

enterprise information system The applications that comprise an enterprise’s
existing system for handling company-wide information. These applications
provide an information infrastructure for an enterprise. An enterprise informa-
tion system offers a well-defined set of services to its clients. These services
are exposed to clients as local and/or remote interfaces. Examples of enter-
prise information systems include enterprise resource planning systems,
mainframe transaction processing systems, and legacy database systems.

enterprise information system resource An entity that provides enterprise infor-
mation system-specific functionality to its clients. Examples are a record or
set of records in a database system, a business object in an enterprise resource
planning system, and a transaction program in a transaction processing sys-
tem.

Enterprise Bean Provider An application programmer who produces enterprise
bean classes, remote and home interfaces, and deployment descriptor files,
and packages them in an EJB .jar file.

Enterprise JavaBeansTM (EJBTM) A component architecture for the development
and deployment of object-oriented, distributed, enterprise-level applications.
Applications written using the Enterprise JavaBeans architecture are scalable,
transactional, and secure.

entity bean An enterprise bean that represents persistent data maintained in a
database. An entity bean can manage its own persistence or it can delegate
this function to its container. An entity bean is identified by a primary key. If
the container in which an entity bean is hosted crashes, the entity bean, its pri-
mary key, and any remote references survive the crash.

finder method A method defined in the home interface and invoked by a client to
locate an entity bean.

form-based authentication An authentication mechanism in which a Web con-
tainer provides an application-specific form for logging in.

group A collection of principals within a given security policy domain.

handle An object that identifies an enterprise bean. A client may serialize the han-
dle and then later deserialize it to obtain a reference to the enterprise bean.

GLOSSARY 393

DEA2e.book Page 393 Friday, March 8, 2002 12:31 AM
home interface One of two interfaces for an enterprise bean. The home interface
defines zero or more methods for creating and removing an enterprise bean.
For session beans, the home interface defines create and remove methods,
while for entity beans, the home interface defines create, finder, and remove
methods.

home handle An object that can be used to obtain a reference of the home inter-
face. A home handle can be serialized and written to stable storage and deseri-
alized to obtain the reference.

HTML HyperText Markup Language. A markup language for hypertext docu-
ments on the Internet. HTML enables the embedding of images, sounds,
video streams, form fields, references to other objects with URLs and basic
text formatting.

HTTP HyperText Transfer Protocol. The Internet protocol used to fetch hypertext
objects from remote hosts. HTTP messages consist of requests from client to
server and responses from server to client.

HTTPS HTTP layered over the SSL protocol.

impersonation An act whereby one entity assumes the identity and privileges of
another entity without restrictions and without any indication visible to the
recipients of the impersonator’s calls that delegation has taken place. Imper-
sonation is a case of simple delegation.

IDL Interface Definition Language. A language used to define interfaces to
remote CORBA objects. The interfaces are independent of operating systems
and programming languages.

IIOP Internet Inter-ORB Protocol. A protocol used for communication between
CORBA object request brokers.

initialization parameter A parameter that initializes the context associated with
a servlet.

ISV Independent Software Vendor.

J2EETM Java 2, Enterprise Edition.

J2METM Java 2, Micro Edition.

J2SETM Java 2, Standard Edition.

GLOSSARY394

DEA2e.book Page 394 Friday, March 8, 2002 12:31 AM
J2EE application Any deployable unit of J2EE functionality. This can be a single
module or a group of modules packaged into an .ear file with a J2EE applica-
tion deployment descriptor. J2EE applications are typically engineered to be
distributed across multiple computing tiers.

J2EE product An implementation that conforms to the J2EE platform specifica-
tion.

J2EE Product Provider A vendor that supplies a J2EE product.

J2EE server The runtime portion of a J2EE product. A J2EE server provides Web
and/or EJB containers.

JAR Java ARchive A platform-independent file format that permits many files to
be aggregated into one file.

JavaTM 2 Platform, Standard Edition (J2SE platform) The core Java technol-
ogy platform.

JavaTM 2 Platform, Enterprise Edition (J2EE platform) An environment for
developing and deploying enterprise applications. The J2EE platform consists
of a set of services, application programming interfaces (APIs), and protocols
that provide the functionality for developing multitiered, Web-based applica-
tions.

JavaTM 2 SDK, Enterprise Edition (J2EE SDK) Sun’s implementation of the
J2EE platform. This implementation provides an operational definition of the
J2EE platform.

JavaTM Message Service (JMS) An API for using enterprise messaging systems
such as IBM MQ Series, TIBCO Rendezvous, and so on.

Java Naming and Directory InterfaceTM (JNDI) An API that provides naming
and directory functionality.

JavaTM Transaction API (JTA) An API that allows applications and J2EE serv-
ers to access transactions.

JavaTM Transaction Service (JTS) Specifies the implementation of a transaction
manager that supports JTA and implements the Java mapping of the OMG
Object Transaction Service (OTS) 1.1 specification at the level below the API.

GLOSSARY 395

DEA2e.book Page 395 Friday, March 8, 2002 12:31 AM
JavaBeansTM component A Java class that can be manipulated in a visual builder
tool and composed into applications. A JavaBeans component must adhere to
certain property and event interface conventions.

Java IDL A technology that provides CORBA interoperability and connectivity
capabilities for the J2EE platform. These capabilities enable J2EE applica-
tions to invoke operations on remote network services using the OMG IDL
and IIOP.

JavaMailTM An API for sending and receiving e-mail.

JavaServer PagesTM (JSP) An extensible Web technology that uses template
data, custom elements, scripting languages, and server-side Java objects to
return dynamic content to a client. Typically the template data is HTML or
XML elements, and in many cases the client is a Web browser.

JDBCTM An API for database-independent connectivity between the J2EE plat-
form and a wide range of data sources.

JMS See Java Message Service.

JNDI See Java Naming and Directory Interface.

JSP See JavaServer Pages.

JSP action A JSP element that can act on implicit objects and other server-side
objects or can define new scripting variables. Actions follow the XML syntax
for elements with a start tag, a body, and an end tag; if the body is empty it
can also use the empty tag syntax. The tag must use a prefix.

JSP action, custom An action described in a portable manner by a tag library
descriptor and a collection of Java classes and imported into a JSP page by a
taglib directive. A custom action is invoked when a JSP page uses a custom
tag.

JSP action, standard An action that is defined in the JSP specification and is
always available to a JSP file without being imported.

JSP application A stand-alone Web application, written using the JavaServer
Pages technology, that can contain JSP pages, servlets, HTML files, images,
applets, and JavaBeans components.

JSP container A container that provides the same services as a servlet container
and an engine that interprets and processes JSP pages into a servlet.

GLOSSARY396

DEA2e.book Page 396 Friday, March 8, 2002 12:31 AM
JSP container, distributed A JSP container that can run a Web application that is
tagged as distributable and is spread across multiple Java virtual machines
that might be running on different hosts.

JSP declaration A JSP scripting element that declares methods, variables, or both
in a JSP file.

JSP directive A JSP element that gives an instruction to the JSP container and is
interpreted at translation time.

JSP element A portion of a JSP page that is recognized by a JSP translator. An
element can be a directive, an action, or a scripting element.

JSP expression A scripting element that contains a valid scripting language
expression that is evaluated, converted to a String, and placed into the implicit
out object.

JSP file A file that contains a JSP page. In the Servlet 2.2 specification, a JSP file
must have a .jsp extension.

JSP page A text-based document using fixed template data and JSP elements that
describes how to process a request to create a response.

JSP scripting element A JSP declaration, scriptlet, or expression whose tag syn-
tax is defined by the JSP specification and whose content is written according
to the scripting language used in the JSP page. The JSP specification
describes the syntax and semantics for the case where the language page
attribute is “java.”

JSP scriptlet A JSP scripting element containing any code fragment that is valid
in the scripting language used in the JSP page. The JSP specification
describes what is a valid scriptlet for the case where the language page
attribute is “java.”

JSP tag A piece of text between a left angle bracket and a right angle bracket that
is used in a JSP file as part of a JSP element. The tag is distinguishable as
markup, as opposed to data, because it is surrounded by angle brackets.

JSP tag library A collection of custom tags identifying custom actions described
via a tag library descriptor and Java classes.

JTA See Java Transaction API.

JTS See Java Transaction Service.

GLOSSARY 397

DEA2e.book Page 397 Friday, March 8, 2002 12:31 AM
method permission An authorization rule that determines who is permitted to
execute one or more enterprise bean methods.

module A software unit that consists of one or more J2EE components of the
same container type and one deployment descriptor of that type. There are
three types of modules: EJB, Web, and application client. Modules can be
deployed as stand-alone units or assembled into an application.

mutual authentication An authentication mechanism employed by two parties
for the purpose of proving each other’s identity to one another.

ORB Object Request Broker. A library than enables CORBA objects to locate and
communicate with one another.

OS principal A principal native to the operating system on which the J2EE plat-
form is executing.

OTS Object Transaction Service. A definition of the interfaces that permit
CORBA objects to participate in transactions.

naming context A set of associations between distinct, atomic people-friendly
identifiers and objects.

naming environment A mechanism that allows a component to be customized
without the need to access or change the component’s source code. A con-
tainer implements the component’s naming environment and provides it to the
component as a JNDI naming context. Each component names and accesses
its environment entries using the java:comp/env JNDI context. The environ-
ment entries are declaratively specified in the component’s deployment
descriptor.

passivation The process of transferring an enterprise bean from memory to sec-
ondary storage. (See activation.)

persistence The protocol for transferring the state of an entity bean between its
instance variables and an underlying database.

POA Portable Object Adapter. A CORBA standard for building server-side appli-
cations that are portable across heterogeneous ORBs.

principal The identity assigned to a user as a result of authentication.

privilege A security attribute that does not have the property of uniqueness and
that may be shared by many principals.

GLOSSARY398

DEA2e.book Page 398 Friday, March 8, 2002 12:31 AM
primary key An object that uniquely identifies an entity bean within a home.

realm See security policy domain. Also, a string, passed as part of an HTTP
request during basic authentication, that defines a protection space. The pro-
tected resources on a server can be partitioned into a set of protection spaces,
each with its own authentication scheme and/or authorization database.

re-entrant entity bean An entity bean that can handle multiple simultaneous,
interleaved, or nested invocations that will not interfere with each other.

Reference Implementation See Java 2 SDK, Enterprise Edition.

remote interface One of two interfaces for an enterprise bean. The remote inter-
face defines the business methods callable by a client.

remove method Method defined in the home interface and invoked by a client to
destroy an enterprise bean.

resource adapter A system-level software driver that is used by an EJB container
or an application client to connect to an enterprise information system. A
resource adapter is typically specific to an enterprise information system. It is
available as a library and is used within the address space of the server or cli-
ent using it. A resource adapter plugs into a container. The application compo-
nents deployed on the container then use the client API (exposed by adapter)
or tool generated high-level abstractions to access the underlying enterprise
information system. The resource adapter and EJB container collaborate to
provide the underlying mechanisms—transactions, security, and connection
pooling—for connectivity to the enterprise information system.

resource manager Provides access to a set of shared resources. A resource man-
ager participates in transactions that are externally controlled and coordinated
by a transaction manager. A resource manager is typically in a different
address space or on a different machine from the clients that access it. Note:
An enterprise information system is referred to as resource manager when it is
mentioned in the context of resource and transaction management.

resource manager connection An object that represents a session with a resource
manager.

resource manager connection factory An object used for creating a resource
manager connection.

GLOSSARY 399

DEA2e.book Page 399 Friday, March 8, 2002 12:31 AM
RMI Remote Method Invocation. A technology that allows an object running in
one Java virtual machine to invoke methods on an object running in a different
Java virtual machine.

RMI-IIOP A version of RMI implemented to use the CORBA IIOP protocol.
RMI over IIOP provides interoperability with CORBA objects implemented
in any language if all the remote interfaces are originally defined as RMI
interfaces.

role (development) The function performed by a party in the development and
deployment phases of an application developed using J2EE technology. The
roles are: Application Component Provider, Application Assembler,
Deployer, J2EE Product Provider, EJB Container Provider, EJB Server Pro-
vider, Web Container Provider, Web Server Provider, Tool Provider, and Sys-
tem Administrator.

role (security) An abstract logical grouping of users that is defined by the Appli-
cation Assembler. When an application is deployed, the roles are mapped to
security identities, such as principals or groups, in the operational environ-
ment.

role mapping The process of associating the groups and/or principals recognized
by the container to security roles specified in the deployment descriptor. Secu-
rity roles have to be mapped by the Deployer before the component is
installed in the server.

rollback The point in a transaction when all updates to any resources involved in
the transaction are reversed.

SAX Simple API for XML. An event-driven, serial-access mechanism for access-
ing XML documents.

screen scraping A technique for accessing a legacy information system by simu-
lating user interaction with the legacy system’s user interface.

security attributes A set of properties associated with a principal. Security
attributes can be associated with a principal by an authentication protocol and/
or by a J2EE Product Provider.

security constraint A declarative way to annotate the intended protection of Web
content. A security constraint consists of a Web resource collection, an autho-
rization constraint, and a user data constraint.

GLOSSARY400

DEA2e.book Page 400 Friday, March 8, 2002 12:31 AM
security context An object that encapsulates the shared-state information regard-
ing security between two entities.

security permission A mechanism, defined by J2SE, used by the J2EE platform
to express the programming restrictions imposed on Application Component
Providers.

security permission set The minimum set of security permissions that a J2EE
Product Provider must provide for the execution of each component type.

security policy domain A scope over which security policies are defined and
enforced by a security administrator. A security policy domain has a collec-
tion of users (or principals), uses a well defined authentication protocol(s) for
authenticating users (or principals), and may have groups to simplify the set-
ting of security policies.

security role See role (security).

security technology domain A scope over which the same security mechanism is
used to enforce a security policy. Multiple security policy domains can exist
within a single technology domain.

security view The set of security roles defined by the Application Assembler.

server principal The OS principal that the server is executing as.

servlet A Java program that extends the functionality of a Web server, generating
dynamic content and interacting with Web clients using a request-response
paradigm.

servlet container A container that provides the network services over which
requests and responses are sent, decodes requests, and formats responses. All
servlet containers must support HTTP as a protocol for requests and
responses, but may also support additional request-response protocols, such
as HTTPS.

servlet container, distributed A servlet container that can run a Web application
that is tagged as distributable and that executes across multiple Java virtual
machines running on the same host or on different hosts.

servlet context An object that contains a servlet’s view of the Web application
within which the servlet is running. Using the context, a servlet can log

GLOSSARY 401

DEA2e.book Page 401 Friday, March 8, 2002 12:31 AM
events, obtain URL references to resources, and set and store attributes that
other servlets in the context can use.

servlet mapping Defines an association between a URL pattern and a servlet. The
mapping is used to map requests to servlets.

session An object used by a servlet to track a user’s interaction with a Web appli-
cation across multiple HTTP requests.

session bean An enterprise bean that is created by a client and that usually exists
only for the duration of a single client-server session. A session bean per-
forms operations, such as calculations or accessing a database, for the client.
While a session bean may be transactional, it is not recoverable should a sys-
tem crash occur. Session bean objects either can be stateless or can maintain
conversational state across methods and transactions. If a session bean main-
tains state, then the EJB container manages this state if the object must be
removed from memory. However, the session bean object itself must manage
its own persistent data.

SSL Secure Socket Layer. A security protocol that provides privacy over the Inter-
net. The protocol allows client-server applications to communicate in a way
that cannot be eavesdropped or tampered with. Servers are always authenti-
cated and clients are optionally authenticated.

SQL Structured Query Language. The standardized relational database language
for defining database objects and manipulating data.

SQL/J A set of standards that includes specifications for embedding SQL state-
ments in methods in the Java programming language and specifications for
calling Java static methods as SQL stored procedures and user-defined func-
tions. An SQL checker can detect errors in static SQL statements at program
development time, rather than at execution time as with a JDBC driver.

stateful session bean A session bean with a conversational state.

stateless session bean A session bean with no conversational state. All instances
of a stateless session bean are identical.

System Administrator The person responsible for configuring and administering
the enterprise’s computers, networks, and software systems.

GLOSSARY402

DEA2e.book Page 402 Friday, March 8, 2002 12:31 AM
transaction An atomic unit of work that modifies data. A transaction encloses one
or more program statements, all of which either complete or roll back. Trans-
actions enable multiple users to access the same data concurrently.

transaction attribute A value specified in an enterprise bean’s deployment
descriptor that is used by the EJB container to control the transaction scope
when the enterprise bean’s methods are invoked. A transaction attribute can
have the following values: Required, RequiresNew, Supports, NotSupported,
Mandatory, Never.

transaction isolation level The degree to which the intermediate state of the data
being modified by a transaction is visible to other concurrent transactions and
data being modified by other transactions is visible to it.

transaction manager Provides the services and management functions required
to support transaction demarcation, transactional resource management, syn-
chronization, and transaction context propagation.

Tool Provider An organization or software vendor that provides tools used for the
development, packaging, and deployment of J2EE applications.

URI Uniform Resource Identifier. A compact string of characters for identifying
an abstract or physical resource. A URI is either a URL or a URN. URLs and
URNs are concrete entities that actually exist; A URI is an abstract superclass.

URL Uniform Resource Locator. A standard for writing a textual reference to an
arbitrary piece of data in the World Wide Web. A URL looks like “protocol://
host/localinfo” where “protocol” specifies a protocol for fetching the object
(such as HTTP or FTP), “host“ specifies the Internet name of the targeted
host, and “localinfo” is a string (often a file name) passed to the protocol han-
dler on the remote host.

URL path The URL passed by a HTTP request to invoke a servlet. The URL con-
sists of the Context Path + Servlet Path + PathInfo, where Context Path is the
path prefix associated with a servlet context of which this servlet is a part. If
this context is the default context rooted at the base of the Web server’s URL
namespace, the path prefix will be an empty string. Otherwise, the path prefix
starts with a / character but does not end with a / character. Servlet Path is the
path section that directly corresponds to the mapping that activated this
request. This path starts with a / character. PathInfo is the part of the request
path that follows the Servlet Path but precedes the query string.

GLOSSARY 403

DEA2e.book Page 403 Friday, March 8, 2002 12:31 AM
URN Uniform Resource Name. A unique identifier that identifies an entity but
doesn’t tell where it is located. A system can use a URN to look up an entity
locally before trying to find it on the Web. It also allows the Web location to
change while still allowing the entity to be found.

user data constraint Indicates how data between a client and a Web container
should be protected. The protection can be the prevention of tampering with
the data or prevention of eavesdropping on the data.

WAR file A JAR archive that contains a Web module.

Web application An application written for the Internet, including those built
with Java technologies such as JavaServer Pages and servlets, as well as those
built with non-Java technologies such as CGI and Perl.

Web application, distributable A Web application that uses J2EE technology
written so that it can be deployed in a Web container distributed across multi-
ple Java virtual machines running on the same host or different hosts. The
deployment descriptor for such an application uses the distributable ele-
ment.

Web component A component that provides services in response to requests;
either a servlet or a JSP page.

Web container An entity that implements the Web component contract of the
J2EE architecture. This contract specifies a runtime environment for Web
components that includes security, concurrency, life cycle management, trans-
action, deployment, and other services. A Web container provides the same
services as a JSP container and a federated view of the J2EE platform APIs. A
Web container is provided by a Web or J2EE server.

Web container, distributed A Web container that can run a Web application that
is tagged as distributable and that executes across multiple Java virtual
machines running on the same host or on different hosts.

Web Container Provider A vendor that supplies a Web container.

Web module A unit that consists of one or more Web components and a Web
deployment descriptor.

Web resource collection A list of URL patterns and HTTP methods that describe
a set of resources to be protected.

GLOSSARY404

DEA2e.book Page 404 Friday, March 8, 2002 12:31 AM
Web server Software that provides services to access the Internet, an intranet, or
an extranet. A Web server hosts Web sites, provides support for HTTP and
other protocols, and executes server-side programs (such as CGI scripts or
servlets) that perform certain functions. In the J2EE architecture, a Web
server provides services to a Web container. For example, a Web container
typically relies on a Web server to provide HTTP message handling. The
J2EE architecture assumes that a Web container is hosted by a Web server
from the same vendor, so it does not specify the contract between these two
entities. A Web server may host one or more Web containers.

Web Server Provider A vendor that supplies a Web server.

XML eXtensible Markup Language. A markup language that allows you to define
the tags (markup) needed to identify the data and text in XML documents.
J2EE deployment descriptors are expressed in XML.

DEA2e.book Page 405 Friday, March 8, 2002 12:31 AM
Index
A
access objects 189

data access objects 190
aggregate objects 191

records 192
ACID properties 252
applet clients 61
applets 26

accessing a UserTransaction 38
transactions 260

application assembler tasks 206
application clients 19, 26, 60

accessing a UserTransaction 38
deployment 243
transactions 260

application scenarios 14
business-to-business 20
multitier 16
stand-alone client 18
Web-centric 19

archive files
EAR 207
EJB JAR 210
JAR 49
WAR 214, 222

ASCII 313
asynchronous messaging 154, 180–181, 183–

185
point-to-point messaging 183
publish-subscribe messaging 183

auditing 307
authentication 40, 280

basic 41, 285
call patterns 292
changing identity 287
client certificate 41
configuration 285
context 280

delegating 281
digest 41, 285
EIS resource 291

application-managed 291
container-managed 291

EJB tier 287
form-based 41, 285

configuration 238
lazy 284
mechanisms 284
mutual 280, 285
role of references 293
scenarios 282
user 53

authenticators 280
authorization 40–41, 293

consistency across components 296
declarative versus programmatic 296
enterprise information systems 199
example 302
programmatic 295

auto-registration 293

B
basic authentication

See authentication, basic
bean-managed persistence 145

find methods 140
portability 149
when to use 149

bean-managed transaction demarcation
message-driven beans 155

browsers 54
download time 57
input 56
JavaScript validation 57
server communication 58
user interface 55

business delegate 351
business logic 130
business methods

implementation 139
in component interface 139
405

INDEX406

DEA2e.book Page 406 Friday, March 8, 2002 12:31 AM
business objects 130
behavior 131
controlling access to 133
high availability 133
implemented by enterprise beans 135
maintaining state 132
modeling as entity beans 143–144
operating on shared data 132
participation in transactions 132
remote accessibility 133
requirements of 131–134
reusability 134
servicing multiple clients 133
structural attributes 131

C
caller principal 296
cardinality

of container-managed relationships 146
CCI

See Common Client Interface
character sets 313

8859 series 314
ASCII 313
encoding 314
Unicode 314

class files 49
client certificate authentication

See authentication, client certificate
client tier 7
client view 137

component interface 137
home interface 137
local view 137
remote view 137

clients
See also Java clients
applets 61
applications 60
browsers 54

download time 57
input 56
JavaScript validation 57
server communication 58
user interface 55

conversational state 59, 69

cookie 59–60
data download 69
design guidelines 54
in distributed application 52
input validation logic 63
interfaces 51
MIDlets 61
network connections 52

security 52
platform considerations 53
presentation logic 61
security 52
state 60

within URL 59
types 51, 60
user authentication 53
user interface 62

code generation wizards 165
collation 320
command beans

access objects
command beans 189

Common Client Interface 178
data integration 186

Common Secure Interoperability (CSIv2)
protocol 288

component interface 137, 139
components 25

applets 26
application clients 26
designing presentation 325
EJB 28
enterprise beans 28, 135
packaging 201
portability 10
presentation 110
rich clients 26
Web 27
wireless clients 27

composite view 350
concurrency 272
concurrent access 143
confidentiality mechanisms 305
connection factory references 193

data source 197
elements of 194
mail session 232
res-auth 194

INDEX 407

DEA2e.book Page 407 Friday, March 8, 2002 12:31 AM
res-ref-name 194
connection pooling 179, 193
connections

closing 194
getConnection 194
guidelines for managing 193–195
sharing 195

res-sharing-scope 195
Connector architecture 43
container-managed persistence 145

benefits 149
find methods 140
select methods 140

container-managed relationships 142, 146
fields 146
manipulation of 146

containers 26
applet

APIs 31
application client 26

APIs 31
EJB 30

APIs 31
JSP 28
platform configuration 7
servlet 28
Web 28

APIs 31
conversational state 151

managing with session beans 157
cookie 59–60, 122
create methods 140

omitting from entity bean 164
credentials 282

D
DAO 190
data

coarse-grained access 141
fine-grained access 142
in XML format 176
independence 149
persistent localized 332
procedural view of 153
records 192
synchronization 71

data access objects 161, 190, 351
clarifying session bean implementations

162
example 162
examples 190–191
implications of use 163
portability 150
providing database portability 161

data integration 185–186
Common Client Interface 186
data access objects 190
J2EE Connector architecture 181
JDBC 181, 186

date formatting 320
deployer tasks 206
deployment 201
deployment descriptors 36

abstract persistence schema 147
application 36
application client 37
auth-constraint element 299
common elements 225
component 36
container-transaction element 236
EJB 36
ejb-ref element 293
ejb-ref-type element 231
env-entry element 226
error-page element 238
login-config element 238, 285
method-permission element 41, 235, 302
persistence-type element 237
res-auth element 197, 232
resource-ref element 291, 293
res-type element 232
security-constraint element 238, 299
security-role element 234
security-role-ref element 235, 295
servlet element 237
servlet-mapping element 238
specifying service information 137
transaction attributes 264
transport-guarantee element 286
versioning 248
Web 36

deployment tools
features

name collision management 248

INDEX408

DEA2e.book Page 408 Friday, March 8, 2002 12:31 AM
name space management 248
remote accessibility 247
single point of entry 246
undeployment capability 247

requirements 242
digest authentication

See authentication, digest
distributed architecture model 357

E
EAI

See enterprise application integration
EAR files 207
EIS

See enterprise information systems
EIS clients 69
EIS tier 7
EJB clients 18, 68

limitations 68
EJB components 129

See enterprise beans
EJB containers 135–136

services 135, 157
services to enterprise bean instances 136

EJB JAR files 210
EJB QL 147

bean-managed persistence 150
find methods 147
FROM clause 147
guidelines 148
SELECT clause 147
select methods 147
WHERE clause 147

EJB servers 135
EJB tier 7
EJB-centric design 356
ejbCreate 140
ejbFind 140
EJBHome 138
ejb-link 228, 239–240
EJBObject 139
ejb-ref 228
ejb-ref-name 228
encoding 314

determining HTTP request 321
setting HTTP response 324

storing at runtime 323
tracking 321
UTF-8 315

enterprise application integration 171
application integration 172
data integration 172
design guidelines 186
legacy integration 172

enterprise applications
development challenges 3

enhancing application developer
productivity 3

ensuring choice in servers, tools, and
components 4

ensuring scalability 4
integrating with information systems

4
maintaining security 5

enterprise beans 28, 136
See also

entity beans
session beans

accessing a UserTransaction 38
class 139
client view 137

guidelines 141–142
implementation 140
local 141
remote 140

client-neutral code 157
component interface 139

operations 139
create methods 139
deployment 242
EntityBean 139
finder methods 139
guidelines 157–158
home interface 138

local client view 138
implementing business objects 135
instances

creating 138
in EJB container 136
obtain home interface 139
remove bean object 139
removing 138

local interfaces 29
master-detail relationships

INDEX 409

DEA2e.book Page 409 Friday, March 8, 2002 12:31 AM
modeling 161
MessageDrivenBean 139
metadata 138
obtaining a handle to home interface 138
packaging into EJB JAR files 211

by related functionality 212
by security profile 213
interrelated 212
with circular dependencies 213

portability 136
protecting 299, 301
remote interfaces 29
service information decoupled from

implementation 137
SessionBean 139
transaction attributes

See transaction attributes
transaction management 137
transactions 262–266
types 29, 135

enterprise information systems 171
access objects 188

command beans 189
data access objects 190
examples 189
guidelines 192
scenarios 192

aggregate access objects 191
application component provider role 187
authorization 199
connections

guidelines for managing 193–195
managing 193
managing by component type 195

EIS sign on 196
container-managed 197

integration
design approaches 181
role of tools 187
technologies 176–181

integration scenarios 172
distributed purchasing application

174
employee self-service application

174
order fulfillment application 176

records 192
relational databases

accessing with JDBC 180
resource sign on

application-managed 198
security

requirements 196
security guidelines 196–199
synchronous integration 181
transactions

JTA 268
resource manager local 269
using 268

Enterprise JavaBeans (EJB) architecture 28,
134
See also enterprise beans

Enterprise JavaBeans (EJB) tier
overview 129
system-level services 129, 134

Enterprise JavaBeans Query Language (EJB
QL) 147

enterprise messaging systems 180
message priority and ordering 184
message routing 184
message transformation 184
reliable message delivery 184
services 184
transaction management 184

enterprise resource planning (ERP) systems
171

entity beans 29, 135, 142
abstract persistence schema 147
bean-managed persistence 145, 149

find methods 140
characteristics 143
concurrent access 143
container-managed persistence 145

benefits 149
EJB QL 147
find methods 140
select methods 140

container-managed relationships 142, 146
manipulation of 146

example 145
find methods 140
home interface

business logic 138
find methods 138

home methods 139
implementation for home methods 140

INDEX410

DEA2e.book Page 410 Friday, March 8, 2002 12:31 AM
instances
finding 138
obtaining primary key 139

lifetime 143
local client view 142, 158
local interfaces 142
omitting create methods 164
persistence 143–144
persistent data

portability 144
persistent identity 143
primary key 135, 165
queries 144
references 164
remote client view 158
state after system crash 143
transaction handling 144

EntityBean 139
error pages

invoking automatically 238
exceptions

portability of 168

F
facade 158
find methods 138, 140
findByPrimaryKey 138, 147, 165
formatting

date 320
message 319

form-based authentication
See authentication, form-based

front controller 350

H
high availability 133
home 140
home business methods 139

implementation
ejbHome 140

home handle 138
home interface 137–138

home business methods 138
home handle 138

local client view 138
remote client view 138

HTML 49, 55–56
input 56

HTTP 45, 58, 65
determining request locale and encoding

321
GET requests 58
POST requests 58
setting response locale and encoding 324

I
I18n 312
identity

of caller 296
private accessor 298
shared accessor 298

identity assertion 288
identity selection 297

invocation identity 289
IDL 46
idlj compiler 46
image files 49
impersonation 280

identity assertion 288
integration

design guidelines 186
integration technologies 176–181
integrity mechanisms 304
intercepting filter 350
internationalization 312

of application design 336
of applications with XML 337
of database schema 334
of JSP pages 327

Interoperable Object References (IORs) 289
isolation levels 272

J
J2EE applications 36, 207

deployment tasks 242
packaging and deployment activities 203
scenarios

See application scenarios

INDEX 411

DEA2e.book Page 411 Friday, March 8, 2002 12:31 AM
J2EE Compatibility Test Suite 9
J2EE Compatibility Test Suite (CTS) 165
J2EE Connector architecture 176–177, 274

application-level contract 178
contracts 177
synchronous integration 181–182
system-level contracts 178

connection management contract 179
security contract 179
services 179
thread management contract 179
transaction management contract 179

J2EE design patterns 350
business delegate 351
composite view 350
data access object 351
front controller 350
in sample application 364, 372
intercepting filter 350
session facade 351
value object 351
view helper 350

J2EE environment 6
J2EE Platform

distributed architecture model 358
local architecture model 358

J2EE platform 5
benefits 10

choice in servers, tools, and
components 13

enhanced application development
productivity 11

integration with enterprise
information systems 12

scalability 14
simplified security model 14

communication technologies 45
component technologies 25
data formats 49
database API 42
deployment services 36
email API 48
integration technologies 176–181
Internet protocols 45
messaging API 47
messaging technologies 47
naming and directory API 43
naming services 35

OMG protocols 46
remote object method invocation API 46
role of containers 7
security services 40
service technologies 42
Standard Extension APIs 31
support for component portability 10
support for multiple client types 7
transaction API 43
transaction services 37

J2EE Reference Implementation (J2EE RI)
165

J2EE roles 32
application assembler 34
application component provider 33
deployer 34
J2EE product provider 33
packaging and deployment tasks 203–207
system administrator 34
tool provider 34

J2EE SDK 9
J2EE specifications xvi, 9
J2EE transaction management 256
J2EE Verifier 165
JAF (JavaBeans Activation Framework) 48
JAR files 49
Java 2 Micro Edition (J2ME) 61
Java API for XML Processing (JAXP) 44
Java Application Descriptor (JAD) file 61
Java Authentication and Authorization

Services (JAAS) 42
Java clients

advantages over browser clients 62
applets 61
applications 60
conversational state 69
data download 69
data manipulation 71
data synchronization 71
input validation logic 63
MIDlets 61
presentation logic 61
server communication 65

as EIS clients 69
as EJB clients 68
as Web clients 65
message formats 66

types 60

INDEX412

DEA2e.book Page 412 Friday, March 8, 2002 12:31 AM
user interface 62
XML messages 67

Java Foundation Classes 61
Java IDL 46
Java Message Service 135, 176, 179
Java Message Service (JMS) 47
Java Naming and Directory Interface (JNDI)

43
Java Network Launching Protocol (JNLP)

60
Java Remote Method Protocol (JRMP) 46
Java Transaction API (JTA) 43, 259
Java Transaction Service (JTS) 43
JavaBeans Activation Framework (JAF) 48
JavaMail 48
JavaScript 56

validation function 57
JavaServer Pages (JSP) technology 28

See also JSP pages
JDBC 42, 177, 180, 273

API 178, 187
client API 180
data integration 186
system-level contract 180

JMS
See Java Message Service
API 180
client 180
domain 180

point-to-point 180
publish-subscribe 180

message listener interface 135
messages 154
provider 180, 274
queue 135
topic 135

JMS (Java Message Service) 47
JNDI (Java Naming and Directory Interface)

43
JRMP (Java Remote Method Protocol) 46
JSP

custom tags 56
JSP pages 28, 80

as presentation components 325
error mechanism 342
error pages 238
localizing and internationalizing 327
where to use 86

XML syntax 80
JTA

TransactionManager interface 260
UserTransaction interface 260–261, 263
XAResource interface 254, 260

JTA (Java Transaction API) 43
JTA transactions

See transactions, JTA
JTS (Java Transaction Service) 43

L
L10n 312
local architecture model 357
local client view 140

component interface 139
container-managed relationships 146
entity beans 142
guidelines for using 141–142, 158
home interface 138
parameter passing 141–142
when to use 141

locale 312
communicating among applications 338
communicating with an application 338
determining HTTP request 321
setting HTTP response 324
standard naming convention 313
storing at runtime 323
tracking 321

localization 312
error messages 343
of error and logging messages 341
of JSP pages 327

localized content
generating dynamic, with XSLT 337

M
markup languages 56
message digests 304
message formatting 319
message signatures 304
message-driven beans 30, 135, 154

application integration 155
as message listeners 154

INDEX 413

DEA2e.book Page 413 Friday, March 8, 2002 12:31 AM
bean-managed transaction demarcation
155

business logic 154
example 156
message selectors 156
onMessage 139, 155
transaction attributes 267
transactions 155
when to use 155

MessageDrivenBean 139
messages

asynchronous 135
definition 184
ensuring privacy of 305
formats 66
localization of 341
message-driven beans 135
preventing tampering 304
security threats 304

messaging
asynchronous communication 183–185
HTTP-based 67
peer-to-peer 180
point-to-point 47
publish-subscribe 48
synchronous and asynchronous

approaches 185
synchronous communication 182–183

metadata 138
middle tier 7
MIDlet clients 61
MIDP User Interface API 61
Mobile Information Device Profile (MIDP)

61
modules

application client 37
packaging 222

EJB 36
contents 210
packaging 210

J2EE 36
resource adapter 36
types 36
Web 36

contents 214, 222
packaging 214, 222

mutual authentication
See authentication, mutual

MVC architecture 348
controller 349

in sample application 371
model 348

in sample application 369
view 348

in sample application 366

N
naming contexts 35

environment 35, 228
naming environments 35

entries 225
naming subcontexts 35

ejb 35, 228
jdbc 35

O
object decomposition 360
onMessage 139, 155

P
packaging 201

components 201
of J2EE applications 207

parameter passing
pass-by-reference semantics 141
pass-by-value semantics 141

peer-to-peer messaging 180
persistent data 143

portability 144
pluggability standard 178
point-to-point messaging 183
portability

bean-managed persistence 149, 167
code generation wizards 165
component 10
data access objects 150
database connections 167
enterprise bean 136
entity bean 144
exceptions 168

INDEX414

DEA2e.book Page 414 Friday, March 8, 2002 12:31 AM
guidelines 165–169
non-transient fields 166
of instance fields 168
SQL 167
type narrowing 166
with container-managed persistence 149

PortableRemoteObject.narrow 166
principal mapping 291
principals 40
protection domains 281
publish-subscribe messaging 183

Q
queries 144, 147

find 147
guidelines 148
select 147

query methods 140
queue-based communication 183

R
records 192
references

connection factory
data source 197
mail session 232

relational database management systems
(RDBMS) 180

remote client view 140
component interface 139
guidelines for using 141–142, 158
home interface 138
parameter passing 141
when to use 140

request-response interaction model 182
resource adapter 177–178

examples 178
system-level mechanisms 177

resource-env-ref 233
resource-ref 231
resource-ref-env-name 233
resources

protected 284, 298
unprotected 301

rich clients 26
RMI 46
rmic compiler 47
RMI-IIOP 46

S
sample application

API manageability 369
architecture 359
components 359
data access 370
EJB-centric design 356
enterprise requirements 15
fulfillment center 353

architecture 375
functional modules 363
functional specification 361
functionality 352
high-level view 352
J2EE design patterns 372
message-driven beans 380
MVC architecture 364, 372

controller 371
model 369
view 366

object decomposition 360
obtaining xv
page layout 367
partitioning 361
process manager 380
role separation 368, 370
security requirements 363
separation of logic 367
tiers 355
using JMS 380
Web site 353

architecture 360
Web-centric design 356

scriptlets 89
security 179

accessor components 297
application-managed sign on 198
attacks on messages 304
attributes 294
capabilities 294
clients 52

INDEX 415

DEA2e.book Page 415 Friday, March 8, 2002 12:31 AM
container-managed EIS sign on 197
declarative 40
EIS access authorization 199
EIS sign on 196
guidelines for application integration 196–

199
mechanisms 280

auditing 307
authentication 280
authorization 293
confidentiality 305
integrity 304
mutual authentication 280
See also

authentication
authorization

permissions 294
principal mapping 291
programmatic 40
protection domains 281
requirements 196
roles 41, 294

mapping to group identities 295
mapping to principal identities 295

threats to 279
Security Attribute Service (SAS) protocol

288
See authentication, form-based
select methods 140
servlets 27, 79

error mechanism 342
where to use 82

session beans 29, 135, 150
as facade to entity beans 158
managing conversational state 157
stateful 150

characteristics 151
example 151
lifetime 150

stateless 152
characteristics 152
example 153

session facade 351
SessionBean 139
SQL query 147
SSL 45, 285, 288
state 130

conversational 151

cookie 59
in clients 59, 69
of entity beans 143
persistence 143
session 59–60

within URL 59
session object 150

synchronous communication
See synchronous integration

synchronous integration 181–182
request-response interaction model 182

T
TCP/IP 45
templates 110
thin clients 54
tiers

client 7
EJB 7
middle 7
Web 7

TLS 288
transaction attributes 264

for entity beans 265
for message-driven beans 267
for session beans 265
guidelines 266–267
Mandatory 266
Never 266
NotSupported 265
Required 265
RequiresNew 265
Supports 265
with container-managed persistence 267

transaction management 137, 144, 179
transactions 37, 251

access to resources 256
ACID 252
applets 260
application clients 260
attributes

See transaction attributes
begin operation 253
commit operation 253
compensating 269–271

pitfalls 271

INDEX416

DEA2e.book Page 416 Friday, March 8, 2002 12:31 AM
concurrency 272
Connector 253, 274
context propagation 254
creating 38
definition of 251
demarcation 253, 256

bean-managed 39, 263
container-managed 39, 264

benefits of 264
guidelines 266

distributed 254, 256, 273
enterprise beans 39, 262–266

setRollbackOnly 264
enterprise informations systems 268
isolation level 272

guidelines 272
J2EE platform

characteristics 256
J2EE SDK 257
JDBC 273
JMS provider 274
JTA 38, 260

benefits 260
local 269
message-driven beans 155
multiple application servers 258
multiple resource managers 273
participants 253
properties 252

atomicity 252
consistency 252
durability 252
isolation 252

resource adapter 253
LocalTransaction 275
NoTransaction 275
transaction level 275
XATransaction 275

resource manager 253
JDBC 273
JMS provider 274

resource manager local 38, 269–270
rollback operation 253
transaction context 254
transaction manager 254
transactional application 253
transactional resource object 253
two-phase commit protocol 255

Web components 38, 261
Web tier guidelines 262
XA protocol 254

type narrowing 166

U
Unicode 314
URL

rewriting 59
use case analysis 353
UserTransaction

accessing 38
from applets 38
from application clients 38
from enterprise beans 38
from Web components 38

UTF-8 315

V
value object 351
value objects 159

example 160
immutability 160

Vendor-Specific Deployment Information
245

verification tools
J2EE Verifier 165

view helper 350

W
WAR files 214, 222
Web applications

distributable 123
Web clients 65
Web components 27

accessing a UserTransaction 38
deployment 243
limitations on transactions 38
packaging into WAR files 215

cross-linked static content 219
transaction guidelines 262
using transactions 261

INDEX 417

DEA2e.book Page 417 Friday, March 8, 2002 12:31 AM
Web container 78
Web resources 284

confidentiality across absolute links 306
confidentiality across relative links 306
protected 284
protecting 299

Web tier 7, 75
application framework design 94
application structure 91
state scope 116

Web-centric design 356
wireless clients 27

X
XML 17, 20, 49, 67

DOM 68
JSP page syntax 80
Simple API for XML (SAX) 68

XSLT
generating localized dynamic content with

337

DEA2e.book Page 418 Friday, March 8, 2002 12:31 AM

	Foreword
	Preface
	About the Authors
	Introduction
	1.1 Challenges of Enterprise Application Development
	1.1.1 Programming Productivity
	1.1.2 Integration with Existing Systems
	1.1.3 Freedom of Choice
	1.1.4 Response to Demand
	1.1.5 Maintaining Security

	1.2 The Platform for Enterprise Solutions
	1.2.1 J2EE Platform Overview
	1.2.1.1 Multitier Model
	1.2.1.2 Container-Based Component Management
	1.2.1.3 Support for Client Components
	1.2.1.4 Support for Business Logic Components
	1.2.1.5 Support for the J2EE Standard

	1.2.2 J2EE Platform Benefits
	1.2.2.1 Simplified Architecture and Development
	1.2.2.2 Integrating Existing Enterprise Information Systems
	1.2.2.3 Choice of Servers, Tools, and Components
	1.2.2.4 Scales Easily
	1.2.2.5 Simplified, Unified Security Model

	1.3 J2EE Application Scenarios
	1.3.1 Multitier Application Scenario
	1.3.2 Stand-Alone Client Scenario
	1.3.3 Web-Centric Application Scenario
	1.3.4 Business-to-Business Scenario

	1.4 How This Book Is Organized
	1.5 Summary
	1.6 References and Resources

	J2EE Platform Technologies
	2.1 Component Technologies
	2.1.1 Types of J2EE Clients
	2.1.2 Web Components
	2.1.2.1 Servlets
	2.1.2.2 JavaServer Pages Technology
	2.1.2.3 Web Component Containers

	2.1.3 Enterprise JavaBeans Components
	2.1.3.1 Session Beans
	2.1.3.2 Entity Beans
	2.1.3.3 Message-Driven Beans
	2.1.3.4 EJB Component Containers

	2.1.4 Components, Containers, and Services

	2.2 Platform Roles
	2.2.1 J2EE Product Provider
	2.2.2 Application Component Provider
	2.2.3 Application Assembler
	2.2.4 Deployer
	2.2.5 System Administrator
	2.2.6 Tool Provider

	2.3 Platform Services
	2.3.1 Naming Services
	2.3.2 Deployment Services
	2.3.2.1 Deployment Units
	2.3.2.2 Platform Roles in the Deployment Process

	2.3.3 Transaction Services
	2.3.3.1 Accessing Transactions
	2.3.3.2 Web Component Transactions
	2.3.3.2.1 Transaction Propagation
	2.3.3.2.2 State Isolation

	2.3.3.3 Enterprise Bean Transactions

	2.3.4 Security Services
	2.3.4.1 Security Methodologies
	2.3.4.2 Authentication
	2.3.4.3 Authorization
	2.3.4.4 Java Authentication and Authorization Services

	2.4 Service Technologies
	2.4.1 JDBC API
	2.4.2 Java Transaction API and Service
	2.4.3 Java Naming and Directory Interface
	2.4.4 J2EE Connector Architecture
	2.4.5 Java API for XML Processing Technology

	2.5 Communication Technologies
	2.5.1 Internet Protocols
	2.5.2 Remote Method Invocation Protocols
	2.5.3 Object Management Group Protocols
	2.5.3.1 Java IDL
	2.5.3.2 RMI-IIOP

	2.5.4 Messaging Technologies
	2.5.4.1 Java Message Service API
	2.5.4.2 JavaMail API
	2.5.4.2.1 JavaBeans Activation Framework API

	2.5.5 Data Formats

	2.6 Summary
	2.7 References and Resources

	The Client Tier
	3.1 Client Considerations
	3.1.1 Network Considerations
	3.1.2 Security Considerations
	3.1.3 Platform Considerations

	3.2 General Design Issues and Guidelines
	3.3 Design Issues and Guidelines for Browser Clients
	3.3.1 Presenting the User Interface
	3.3.2 Validating User Inputs
	3.3.3 Communicating with the Server
	3.3.4 Managing Conversational State

	3.4 Design Issues and Guidelines for Java Clients
	3.4.0.0.1 Application Clients
	3.4.0.0.2 Applet Clients
	3.4.0.0.3 MIDlet Clients
	3.4.1 Presenting the User Interface
	3.4.2 Validating User Inputs
	3.4.3 Communicating with the Server
	3.4.3.0.1 Web Clients
	3.4.3.0.2 EJB Clients
	3.4.3.0.3 EIS Clients

	3.4.4 Managing Conversational State

	3.5 Summary
	3.6 References and Resources

	The Web Tier
	4.1 The Purpose of the Web Tier
	4.2 Web-Tier Technologies
	4.2.1 Traditional Web-Tier Technologies
	4.2.2 Web-Tier Technologies in the J2EE Platform
	4.2.3 The Web Container
	4.2.4 Java Servlets
	4.2.5 JavaServer Pages (JSP) Technology
	4.2.5.1 XML JSP Page Syntax
	4.2.5.2 Custom Tags
	4.2.5.3 Standard Tag Libraries

	4.2.6 Web-Tier Technology Guidelines
	4.2.6.1 Where to Use Servlets
	4.2.6.1.1 Use Servlets to Implement Services
	4.2.6.1.2 Use Servlets as Controllers
	4.2.6.1.3 Use Servlets to Generate Binary Content

	4.2.6.2 Avoid Writing Servlets That Print Mostly Static Text
	4.2.6.3 Use RequestDispatcher Methods forward and include Correctly
	4.2.6.4 Where to Use JavaServer Pages
	4.2.6.4.1 Use JSP Pages for Data Presentation
	4.2.6.4.2 Use JSP Pages to Generate XML
	4.2.6.4.3 Use JSP Pages to Generate Unstructured Textual Content
	4.2.6.4.4 Use JSP Pages as Templates

	4.2.6.5 JSP Pages Character Encoding
	4.2.6.6 Avoid Heavy Use of Logic Tags
	4.2.6.7 Use JSP Include Directives and Tags Appropriately
	4.2.6.8 Using Custom Tags to Avoid Scriptlets
	4.2.6.9 Avoid Forwarding Requests from JSP Pages

	4.3 Web-Tier Application Structure
	4.4 Web-Tier Application Framework Design
	4.4.1 Structuring the Web Tier
	4.4.1.0.1 When to Switch from Model 1 to Model 2

	4.4.2 Web-Tier MVC Controller Design
	4.4.2.1 Web-Tier Controller Design
	4.4.2.1.1 Identifying the Operation to Perform
	4.4.2.1.2 Invoking Model Methods
	4.4.2.1.3 Controlling Dynamic Screen Flow
	4.4.2.1.4 Example

	4.4.2.2 Serving Multiple Client Types

	4.4.3 Web-Tier MVC View Design
	4.4.3.1 Templating

	4.4.4 Web-Tier MVC Model Design
	4.4.5 Web Application Frameworks
	4.4.6 Separating Business Logic from Presentation
	4.4.7 Web-Tier State
	4.4.7.1 State Scope
	4.4.7.2 Performance Implications of State Scope
	4.4.7.2.1 How the Web Container Manages Session State

	4.4.7.3 Web-Tier State Recommendations
	4.4.7.3.1 Maintain Session State with Stateful Session Beans
	4.4.7.3.2 Maintain Web-Tier Session State in Session Attributes
	4.4.7.3.3 Share Data among Servlets and JSP Pages with JavaBeans Components
	4.4.7.3.4 Avoid Using Cookies Directly

	4.4.8 Distributable Web Applications
	4.4.8.1 Distributed Servlet Instances
	4.4.8.2 Distributed Conversational State
	4.4.8.3 Distributable Servlet Restrictions

	4.5 Summary
	4.6 References and Resources

	The Enterprise JavaBeans Tier
	5.1 Business Logic and Business Objects
	5.1.1 Common Requirements of Business Objects
	5.1.1.1 Maintain State
	5.1.1.2 Operate on Shared Data
	5.1.1.3 Participate in Transactions
	5.1.1.4 Service a Large Number of Clients
	5.1.1.5 Remain Available to Clients
	5.1.1.6 Provide Remote Access to Data
	5.1.1.7 Control Access
	5.1.1.8 Reusable

	5.2 Enterprise Beans as J2EE Business Objects
	5.2.1 Enterprise Beans and EJB Containers
	5.2.1.1 Home Interface
	5.2.1.2 Component Interface
	5.2.1.3 Enterprise Bean Class

	5.3 Remote and Local Client Views
	5.3.1 Guidelines for Using Local or Remote Client Views
	5.3.2 Entity Beans and Local Client Views

	5.4 Entity Beans
	5.4.1 Guidelines for Using Entity Beans
	5.4.2 Entity Bean Persistence
	5.4.2.1 Example: A Customer Account Bean
	5.4.2.2 Container-Managed Relationships
	5.4.2.3 EJB QL, the EJB Query Language
	5.4.2.4 Benefits of EJB 2.0 Container-Managed Persistence

	5.4.3 When to Use Bean-Managed Persistence

	5.5 Session Beans
	5.5.1 Stateful Session Beans
	5.5.1.1 Uses of Stateful Session Beans
	5.5.1.2 Example: A Shopping Cart Bean

	5.5.2 Stateless Session Beans
	5.5.2.1 Uses of Stateless Session Beans
	5.5.2.2 Example: A Catalog Bean

	5.6 Message-Driven Beans
	5.6.1 Uses of Message-Driven Beans
	5.6.2 Example: Invoice Message-Driven Bean

	5.7 Design Guidelines
	5.7.1 Remote versus Local Client Access for Entity Beans
	5.7.2 Session Beans as a Facade to Entity Beans
	5.7.3 Fine-Grained versus Coarse-Grained Object Access
	5.7.3.1 Example: An Address Value Object

	5.7.4 Master-Detail Modeling Using Enterprise Beans
	5.7.5 Data Access Objects
	5.7.5.1 Clarifying Bean Implementations
	5.7.5.2 Consequences of Using DAO Pattern

	5.7.6 Implementing an Entity Bean without a Create Method
	5.7.7 Representing References to Entity Beans

	5.8 Portability Guidelines
	5.8.1 Typecast Remote References
	5.8.2 Mark Non-Serializable Fields Transient
	5.8.3 Bean-Managed Persistence and Portability
	5.8.3.1 SQL and Database Connections
	5.8.3.2 Relying on Instance Fields
	5.8.3.3 Avoid Exposing Resource-Specific Details

	5.9 Summary
	5.10 References and Resources

	Integrating with the Enterprise Information System Tier
	6.1 Integration Scenarios
	6.1.1 An Internet E-Store Application
	6.1.2 An Intranet Human Resources Application
	6.1.3 A Distributed Purchasing Application
	6.1.4 An Order Fulfillment Application

	6.2 J2EE Integration Technologies
	6.2.1 J2EE Connector Architecture
	6.2.2 Java Message Service API
	6.2.3 JDBC and RDBMS Access

	6.3 Application Integration Design Approaches
	6.3.1 Synchronous Integration
	6.3.2 Asynchronous Integration
	6.3.3 Comparing Approaches
	6.3.4 Data Integration

	6.4 Developing an Integration Layer
	6.4.1 Programming Access to Data and Functions
	6.4.2 Using Tools for EIS Integration
	6.4.3 Developing EIS Access Objects
	6.4.3.1 Types of Access Objects
	6.4.3.1.1 Command Beans
	6.4.3.1.2 Data Access Objects
	6.4.3.1.3 Record Objects

	6.4.3.2 Using Access Objects
	6.4.3.3 Guidelines for Access Objects

	6.4.4 Guidelines for Connection Management
	6.4.4.1 Connection Management by Component Type

	6.4.5 Security Guidelines
	6.4.5.1 EIS Sign On
	6.4.5.1.1 Container-Managed Sign On
	6.4.5.1.2 Application-Managed Sign On

	6.4.5.2 Handling EIS Access Authorization

	6.5 Summary
	6.6 References and Resources

	Packaging and Deployment
	7.1 Packaging Components
	7.2 Roles and Tasks
	7.2.1 Application Component Provider Tasks
	7.2.2 Application Assembler Tasks
	7.2.3 Deployer Tasks

	7.3 Packaging J2EE Applications
	7.3.1 EJB Modules
	7.3.2 EJB Module Packaging Guidelines
	7.3.2.1 Packaging Components into EJB Modules
	7.3.2.1.1 Grouping by Related Functionality
	7.3.2.1.2 Grouping Interrelated Beans
	7.3.2.1.3 Grouping for Circular References
	7.3.2.1.4 Grouping with Common Security Profiles

	7.3.2.2 Local Interfaces in the JNDI Namespace
	7.3.2.3 EJB Module Deployment Recommendations

	7.3.3 Web Modules
	7.3.4 Packaging Components into Web Modules
	7.3.4.1 Request Path Elements
	7.3.4.2 Web Application Directory Structure
	7.3.4.3 Hyperlinks within a Web Module
	7.3.4.4 Decoupling Application Components
	7.3.4.5 Cross-Linked Static Content
	7.3.4.6 Logical Grouping of Functionality
	7.3.4.7 Utility Libraries
	7.3.4.8 Accessing EJB Components from Web Components

	7.3.5 Application Client Modules
	7.3.6 Resource Adapter Modules

	7.4 Deployment Descriptors
	7.4.1 J2EE Naming Environment
	7.4.1.0.1 Parameterized Component Behavior
	7.4.1.0.2 Decoupling Components and Resources

	7.4.2 Specifying Deployment Descriptor Elements
	7.4.2.1 Common Elements
	7.4.2.1.1 Declaring Environment Entries
	7.4.2.1.2 Declaring and Resolving References to Enterprise Beans
	7.4.2.1.3 Declaring References to Connection Factories
	7.4.2.1.4 Declaring Resource Environment References
	7.4.2.1.5 Security Elements

	7.4.2.2 Enterprise Bean Elements
	7.4.2.2.1 Transaction Elements
	7.4.2.2.2 Persistence Elements

	7.4.2.3 Web Component Elements
	7.4.2.3.1 Servlet
	7.4.2.3.2 Servlet Mapping
	7.4.2.3.3 Error Pages
	7.4.2.3.4 Form-Based Authentication Configuration

	7.4.3 Naming Convention Recommendations
	7.4.3.0.1 Naming Environment Entries
	7.4.3.0.2 Naming Enterprise Bean References
	7.4.3.0.3 Naming Connection Factory References
	7.4.3.0.4 Naming Environment Resource References

	7.5 Deployment Tools
	7.5.1 Deployment Tool Actions
	7.5.2 Deployment Tool Requirements
	7.5.2.1 Vendor-Specific Deployment Information
	7.5.2.2 Single Point of Entry for Deployment
	7.5.2.3 Remotely Accessible Deployment
	7.5.2.4 Undeployment Capability
	7.5.2.5 JNDI Namespace Management
	7.5.2.6 Name Collision Management
	7.5.2.7 Deployment Descriptor Versioning

	7.6 Summary
	7.7 References and Resources

	Transaction Management
	8.1 Transactional Concepts
	8.1.1 ACID Transaction Properties
	8.1.2 Transaction Participants
	8.1.3 Transaction Demarcation
	8.1.4 Distributed Transactions
	8.1.5 Two-Phase Commit Protocol

	8.2 J2EE Platform Transactions
	8.2.1 Accessing Multiple Resources within a Transaction
	8.2.1.0.1 Example: Transactions across Multiple Resource Managers

	8.2.2 Transactions across Servers
	8.2.2.0.1 Example: Transactions across J2EE Servers

	8.3 J2EE Transaction Technologies
	8.3.0.0.1 Java Transaction API (JTA)

	8.4 Client Tier Transactions
	8.5 Web Tier Transaction Guidelines
	8.5.0.0.1 Web Tier Transaction Guidelines

	8.6 Enterprise JavaBeans Tier Transactions
	8.6.1 Bean-Managed Transaction Demarcation
	8.6.2 Container-Managed Transaction Demarcation
	8.6.3 Transaction Attributes
	8.6.3.0.1 Required
	8.6.3.0.2 RequiresNew
	8.6.3.0.3 NotSupported
	8.6.3.0.4 Supports
	8.6.3.0.5 Mandatory
	8.6.3.0.6 Never

	8.6.4 Enterprise JavaBeans Tier Transaction Guidelines
	8.6.4.1 Transaction Attributes Guidelines
	8.6.4.2 Container-Managed Persistence Transaction Attributes Guidelines

	8.7 EIS Tier Transactions
	8.7.1 JTA Transactions
	8.7.2 Resource Manager Local Transactions
	8.7.3 EIS Tier Transaction Guidelines
	8.7.4 Compensating Transactions
	8.7.4.1 Compensating Transaction Guidelines

	8.7.5 Isolation Level
	8.7.6 Performance with Multiple Resource Managers

	8.8 J2EE Resource Manager Types
	8.8.1 JDBC Databases
	8.8.2 JMS Providers
	8.8.3 J2EE Connector Architecture

	8.9 Summary
	8.10 References and Resources

	Security
	9.1 Security Threats and Mechanisms
	9.2 Authentication
	9.2.1 Protection Domains
	9.2.2 Authentication Mechanisms
	9.2.2.1 Web Tier Authentication
	9.2.2.1.1 Authentication Configuration
	9.2.2.1.2 Hybrid Authentication
	9.2.2.1.3 Changing Authentication Identity

	9.2.2.2 EJB Tier Authentication
	9.2.2.2.1 Common Secure Interoperability (CSIv2)

	9.2.2.3 Client Identity Selection
	9.2.2.4 Enterprise Information System Tier Authentication

	9.2.3 Authentication Call Patterns
	9.2.3.1 Self-Registration

	9.2.4 Exposing Authentication Boundaries with References

	9.3 Authorization
	9.3.1 Declarative Authorization
	9.3.2 Programmatic Authorization
	9.3.3 Declarative versus Programmatic Authorization
	9.3.4 Isolation
	9.3.5 Affects of Identity Selection
	9.3.6 Encapsulation for Access Control
	9.3.6.1 Shared Accessor Identity
	9.3.6.2 Private Accessor Identity

	9.3.7 Controlling Access to J2EE Resources
	9.3.7.1 Controlling Access to Web Resources
	9.3.7.2 Controlling Access to Enterprise Beans
	9.3.7.3 Unprotected Resources

	9.3.8 Example

	9.4 Protecting Messages
	9.4.1 Integrity Mechanisms
	9.4.2 Confidentiality Mechanisms
	9.4.3 Identifying Sensitive Components
	9.4.4 Ensuring Confidentiality of Web Resources

	9.5 Auditing
	9.6 Summary
	9.7 References and Resources

	J2EE Internationalization and Localization
	10.1 Internationalization Concepts and Terminology
	10.1.1 Internationalization, Localization, and Locale
	10.1.1.1 Standard Locale Naming Convention

	10.1.2 Character Sets
	10.1.2.2 ASCII
	10.1.2.3 The 8859 Series
	10.1.2.4 Unicode

	10.1.3 Encodings
	10.1.3.5 UTF-8

	10.2 Using J2SE Internationalization APIs in J2EE Applications
	10.2.1 Resource Bundles
	10.2.2 Message Formatting
	10.2.3 Date Formatting
	10.2.4 Collation

	10.3 Web Tier Internationalization
	10.3.1 Tracking Locales and Encodings
	10.3.1.1 Determining HTTP Request Locale and Encoding
	10.3.1.2 Storing Locale and Encoding at Runtime
	10.3.1.3 Setting HTTP Response Locale and Encoding

	10.3.2 Presentation Component Design
	10.3.2.3.1 Example

	10.3.3 Internationalizing and Localizing JSP Pages
	10.3.3.4 Localizing JSP Pages with Resource Bundles
	10.3.3.5 Locale-Specific JSP Pages

	10.4 EIS Tier Internationalization
	10.4.1 Persistent Localized Data
	10.4.1.0.1 Value Conversion, Value Representation, and Information Loss

	10.4.2 Internationalizing Database Schema

	10.5 Internationalized Application Design
	10.6 Internationalizing Applications with XML
	10.6.1 Generating Localized Dynamic Content with XSLT
	10.6.2 Communicating Locale within an Application
	10.6.3 Communicating Locale among Applications

	10.7 Localizing Error and Logging Messages
	10.7.1 Client Messages and Application Exceptions
	10.7.1.0.1 JSP Pages Error Mechanism
	10.7.1.0.2 Servlet Error Mechanism
	10.7.1.0.3 Localizing Error Messages

	10.7.2 System Exceptions and Message Logging

	10.8 Summary
	10.9 References and Resources

	Architecture of the Sample Application
	11.1 J2EE Architecture Approaches
	11.1.1 Model-View-Controller Architecture
	11.1.2 J2EE Design Patterns

	11.2 Sample Application Overview
	11.3 Designing the Sample Application
	11.3.1 Choosing Application Tiers
	11.3.2 Choosing Local or Distributed Architecture
	11.3.2.1 Comparison of Local and Distributed Architectures
	11.3.2.2 J2EE Platform Distributed and Local Options

	11.4 Architecture of the Sample Application
	11.4.1 Application Web Site Architecture
	11.4.1.1 View Layer of the Application Architecture
	11.4.1.2 Model Layer of the Application Architecture
	11.4.1.3 Controller Layer of the Application Architecture
	11.4.1.4 Applying MVC Architecture to Web Application

	11.4.2 Fulfillment Center Architecture

	11.5 Summary
	11.6 References and Resources

	Afterword
	Glossary
	Index

	A
	B
	C
	D
	E
	F
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

